scholarly journals Synthesis of Novel Nano-Strawberry TiO2 Structures with the Aid of Microwave Inverter System: Growth Time Effect on Optical Absorption Intensity

2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Athar Ali Shah

<p class="western"><span lang="EN-MY">A novel anatase TiO<sub>2</sub> with nanostrawberry-like structure with high porosity has been synthesised on ITO, with the aid of microwave power in a very short duration of 6 minutes. The growth of these novel TiO<sub>2</sub>nanostructures on ITO is attained stoichiometrically by using <em>ammonium hexafluoro titanate, Hexamethylenetetramine, and Boric acid as precursor, capping agent, and reducing agent, respectively</em>. Optical absorption intensity and thickness of these nanostructure layers can be varied by the growth time. A highly porous, 2.25 µm thickest layer has been successfully synthesised on ITO, and the average diameter of these nanostructures was found approximately 70±2.5nm. These highly porous nanostructures are expected to be good candidate for photocatlysis applications and efficient photovoltaic performances of dye sensitised solar cells.</span></p>

2016 ◽  
Vol 1 ◽  
Author(s):  
Athar Ali Shah

<p class="western"><span lang="EN-MY">A novel anatase TiO<sub>2</sub> with nanostrawberry-like structure with high porosity has been synthesised on ITO, with the aid of microwave power in a very short duration of 6 minutes. The growth of these novel TiO<sub>2</sub>nanostructures on ITO is attained stoichiometrically by using <em>ammonium hexafluoro titanate, Hexamethylenetetramine, and Boric acid as precursor, capping agent, and reducing agent, respectively</em>. Optical absorption intensity and thickness of these nanostructure layers can be varied by the growth time. A highly porous, 2.25 µm thickest layer has been successfully synthesised on ITO, and the average diameter of these nanostructures was found approximately 70±2.5nm. These highly porous nanostructures are expected to be good candidate for photocatlysis applications and efficient photovoltaic performances of dye sensitised solar cells.</span></p>


2018 ◽  
Vol 148 ◽  
pp. 118-129 ◽  
Author(s):  
C. Manjunath ◽  
M.S. Rudresha ◽  
B.M. Walsh ◽  
R. Hari Krishna ◽  
B.S. Panigrahi ◽  
...  

2020 ◽  
Vol 990 ◽  
pp. 149-154
Author(s):  
Nutchaporn Ngamthanacom ◽  
Napat Kaewtrakulchai ◽  
Weerawut Chaiwat ◽  
Laemthong Chuenchom ◽  
Masayoshi Fuji ◽  
...  

Waste lignin (WL) from the pulp mill and paper was studied for its potential application to prepare the nanoporous carbon with high porosity via carbonization assisted acid activation. The effect of acid activation such as HNO3, HCl, H2SO4, and H3PO4 on lignin transformation to nanoporous carbon investigated. The physicochemical properties of nanoporous carbon were comprehensively characterized through N2 sorption, Scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), respectively. N2 sorption revealed that the condition using 5% vol of phosphoric acid activation at carbonization temperature of 700°C for 2 h exhibited the highly porous structure of carbon nanoparticles with a total pore volume of 0.035 cm3/g. With the properly selecting process variables of waste lignin development could be producing high porosity nanoporous carbon.


Agriculture ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 114 ◽  
Author(s):  
Wen-Tien Tsai ◽  
Chien-Hung Hsu ◽  
Yu-Quan Lin

The use of biochar in the horticulture and crop fields is a recent method to improve soil fertility due to its porous features and rich nutrients. In the present study, dairy manure (DM) was used as a biomass precursor in the preparation of highly porous biochar (DM-BC) produced at specific conditions. Based on N2 adsorption-desorption isotherms and scanning electron microscopy (SEM) observations, the resulting biochar featured its microporous/mesoporous textures with a BET surface area of about 300 m2/g and total pore volume of 0.185 cm3/g, which could be a low-cost biosorbent for the effective removal of methylene blue (MB) from the aqueous solution. As observed by the energy dispersive X-ray spectroscopy (EDS), the primary inorganic nutrients on the surface of DM-BC included calcium (Ca), magnesium (Mg), potassium (K), phosphorus (P), silicon (Si), sulfur (S), sodium (Na) and aluminum (Al). Furthermore, the resulting biochar was investigated in duplicate for its biosorption performance of cationic compound (i.e., methylene blue, MB) from the aqueous solution with various initial MB concentrations and DM-BC dosages at 25 °C. The findings showed that the biosorption kinetic parameters fitted by the pseudo-second order rate model with high correlations were consistent with its porous features. These experimental results suggested that the porous DM-based biochar could be reused as a biosorbent, biofertilizer, or soil amendments due to the high porosity and the abundance in nutrient minerals.


2019 ◽  
Vol 9 (6) ◽  
pp. 1049 ◽  
Author(s):  
Saveria Santangelo

Electrospinning is a simple, versatile, cost-effective, and scalable technique for the growth of highly porous nanofibers. These nanostructures, featured by high aspect ratio, may exhibit a large variety of different sizes, morphologies, composition, and physicochemical properties. By proper post-spinning heat treatment(s), self-standing fibrous mats can also be produced. Large surface area and high porosity make electrospun nanomaterials (both fibers and three-dimensional fiber networks) particularly suitable to numerous energy-related applications. Relevant results and recent advances achieved by their use in rechargeable lithium- and sodium-ion batteries, redox flow batteries, metal-air batteries, supercapacitors, reactors for water desalination via capacitive deionization and for hydrogen production by water splitting, as well as nanogenerators for energy harvesting, and textiles for energy saving will be presented and the future prospects for the large-scale application of electrospun nanomaterials will be discussed.


2013 ◽  
Vol 807-809 ◽  
pp. 1010-1014
Author(s):  
Gan Wen Lie ◽  
Guang Hua Lie ◽  
Ding Chao Pan ◽  
Long Hua Ye ◽  
Dong Yu Li

By using a new kind of single-beam normalized photo-acoustic tomography spectroscopy (PAS-CT) technology with non-damage detection, the photo-acoustic tomography spectroscopy and optical absorption properties of green and yellow leaves ofBauhinia blakeanawere studied. The results show that: the photo-acoustic tomography spectroscopy ofBauhinia blakeanaleaves could be obtained from different chopping frequency and different sample positions, and photosynthetic pigment content of their leaves is closely related to their photosynthetic intensity. The more photosynthetic pigment content the leaves ofBauhinia blakeanacontain, the bigger optical absorption coefficient and the higher photosynthetic efficiency they have. The photosynthetic pigment content of the green leaves ofBauhinia blakeanais higher than that of the yellow ones. As a result, the photosynthesis of green leaves is better than that of the yellow ones. According to the results of our research, the photosynthetic efficiency ofBauhinia blakeanacould be improved and its growth time could be effectively controlled to enhance the growth ofBauhinia blakeana. Furthermore, it could play an important role on the development of forestry, and meet the need of forest for 6 billion people. The research showed high science value to the study and applications of the photosynthesis of plants.


2013 ◽  
Vol 807-809 ◽  
pp. 596-600
Author(s):  
Gan Wen Lie ◽  
Guang Hua Lie ◽  
Hou Zhu Mao ◽  
Dong Yu Li

By using a new kind of single-beam normalized photo-acoustic tomography spectroscopy (PAS-CT) technology with non-damage detection, the photo-acoustic tomography spectroscopy, optical absorption properties and photosynthetic pigment content of green and red leaves ofBischofia javanicawere studied. The results show that: the photo-acoustic tomography spectroscopy ofBischofia javanicaleaves could be obtained from different chopping frequency and different sample positions, and photosynthetic pigment content of their leaves is closely related to their photosynthetic intensity. The more photosynthetic pigment content the leaves ofBischofia javanicacontain, the bigger optical absorption coefficient and the higher photosynthetic efficiency they have. The photosynthetic pigment content of the green leaves ofBischofia javanicais higher than that of the red ones. As a result, the photosynthesis of green leaves is better than that of the red ones. According to the results of our research, the photosynthetic efficiency ofBischofia javanicacould be improved and its growth time could be effectively controlled to enhance the growth ofBischofia javanica. Furthermore, it could play an important role on the development of forestry, and meet the need of forest for 6 billion people. The research showed high science value to study and applications of the photosynthesis of plants.


2010 ◽  
Vol 63 ◽  
pp. 408-413 ◽  
Author(s):  
Hrvoje Ivankovic ◽  
Sebastijan Orlic ◽  
Dajana Kranzelic ◽  
Emilija Tkalcec

Highly porous hydroxyapatite (Ca10(PO4)6(OH)2, HA) was prepared through hydrothermal (HT) transformation of aragonitic cuttlefish bones (Seppia Officinalis L. Adriatic Sea) in the temperature range from 140°C to 220°C for 20 minutes to 48 hours. Mechanism of hydrothermal transformation of bones was investigated by DTA/TG analyzer coupled online with FTIR spectrometric gas cell equipment (DTA-TG-EGA-FTIR analysis), X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). DTA-TG-EGA-FTIR analysis have shown the release of CO2 at about 400°C, 680°C and 990°C. The first release could be attributed to organics not completely removed from the heat treated bones, and the second release to decomposition of unconverted aragonite, whereas, the third one could be attributed to CO3 2– groups incorporated in the structure of HA. The interconnecting porous morphology of the starting material (aragonite) was maintained during the HT treatment. The formation of dandelion-like HA spheres with diameter from 3 to 8 μm were observed, which further transformed into nanoplates and nanorods with an average diameter of about 200-300 nm and an average length of about 8-10 μm.


2008 ◽  
Vol 368-372 ◽  
pp. 898-900
Author(s):  
Hong Zeng ◽  
Hong Jie Wang ◽  
Juan Li Yu ◽  
Dan Bo Lin ◽  
Guan Jun Qiao ◽  
...  

In this paper, highly porous Si3N4 ceramics with high strength, homogeneous microstructure were fabricated by introducing a proper amount of nanometer carbon in the Si3N4 slurry by gel-casting. Scanning electron microscopy, X-ray diffraction, Archimedes water-displacement method and three-point bending tests were employed to analyze the microstructures and mechanical properties of the sintered bodies. It was shown by the XRD analysis that SiC particles were formed in the sintered bodies. The pillar β- Si3N4 morphology, homogeneous microstructure and the SiC particles as a reinforcement phase are the contributing factors for high porosity and good mechanical behavior.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1183-1188 ◽  
Author(s):  
ANATOLY BRAGOV ◽  
ALEXANDER KONSTANTINOV ◽  
ANDREY LOMUNOV ◽  
ANATOLY SADYRIN ◽  
IVAN SERGEICHEV ◽  
...  

High-porosity materials, such as chamotte and mullite, possess a heat of fusion. Owing to their properties, these materials can be used with success as damping materials in containers for airplane, automobile, etc. transportation of radioactive or highly toxic materials. Experimental studies of the dynamic properties have been executed with using some original modifications of the Kolsky method. These modified experiments have allowed studying the dynamic compressibility of high-porosity chamotte at deformations up to 80% and amplitudes up to 50 MPa. The equations of the mathematical model describing shock compacting of chamotte as a highly porous, fragile, collapsing material are presented. Deformation of high-porous materials at non-stationary loadings is usually accompanied by fragile destruction of interpore partitions as observed in other porous ceramic materials. Comparison of numerical and experimental results has shown their good conformity.


Sign in / Sign up

Export Citation Format

Share Document