scholarly journals Estudio de Materiales Nanoestructurados por Metalurgia de Polvos del Ternario Zn-Al-Ag

2018 ◽  
Vol 3 (1) ◽  
pp. 393
Author(s):  
Nancy Badillo Hernández ◽  
Estela Sarmiento Bustos ◽  
Arturo Molina Ocampo ◽  
Said Robles Casolco

In this work one presents the study realized to the compound materials: a) Zn77.0-Al22.0-Ag1.0 (wt. %) [Ternary Alloy], b) Zn77.0-Al22.0-Ag-1.0 (wt. %) [Compound Material 1] reinforced with 5 % of NaCl, and c) Al77.0-Zn22.0-Ag1.0 (wt. %)/Si [compound Material 2], the materials were incorporated by means of the alloyed mechanic in a time of grinding of 7 hours. The microstructural characterization was realized by means of: a) Diffraction of beams-X (DRX), b) Scanning Electronic Microscopy (SEM) and c) Microhardness Vickers (HV). The aim of this work was to study the effect of the microstructure and the hardness of a materials composed bases zinc and his comparison with a ternary alloy. Materials were obtained nanostructure by sizes of crystal in the ternary alloy of 94nm, and for the compound materials 1 and 2, 116 and 121 nm respectively. The values of hardness obtained for three systems have direct relation with the size of crystal. The image obtained to SEM at 7 hours of grinding suggests that the ternary alloy presents in the morphology bigger agglomerated particles and the compound material 2 particles small flakes. The results suggest that porous materials were obtained in three studied systems. Keywords: Mechanical alloy, Metallurgy of powders, Nanocomposite, Reinforcement with particles.

2013 ◽  
Vol 690-693 ◽  
pp. 359-362
Author(s):  
Shi Meng Xu ◽  
Run Bo Ma ◽  
Jian Hua Du ◽  
Jun Hong Liu ◽  
Qi Jin

Based on the elliptic element model, the new sorting method on the same pattern compound materials was given in this paper according to the pictures obtained by electronic microscopy systems on the surfaces. Here, the block design combined with variance analysis was introduced to sort the compound materials that contained that the copper-base mingled with graphite, silica and other non-pronounced components. Here, the five kinds of the same pattern compound materials were proposed for sorting, only the graphite distribution was considered and their mixture ratios of components were separately 10%, 15%, 20%, 25%, 30%. At last, through experiment data and statistical analysis, the result of sorting was basically corresponding to the above mixture ratios of components.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 355
Author(s):  
Marco A. L. Hernandez-Rodriguez ◽  
Diego E. Lozano ◽  
Gabriela M. Martinez-Cazares ◽  
Yaneth Bedolla-Gil

The present study evaluates the effect of boron additions on the tribological performance of CoCrMo alloys. The alloys were prepared with boron ranging from 0.06 to 1 wt%. The materials were characterized using metallographic techniques, scanning electronic microscopy, and roughness and hardness tests. Tribological evaluation was made by means of ball-on-disc tests for sliding distances of 4, 8 and 12 km. The samples were in the as-cast condition and after a heat treatment at 1200 °C for 1 h, finished by water quenching. The results showed that wear resistance was influenced by the microstructure and the number of secondary phases. The volume loss decreased as the boron content increased. Due to hard phases, abrasion wear was observed. Delamination fatigue was also detected after long sliding distances. Both wear mechanisms diminished in higher boron content alloys.


2017 ◽  
Vol 9 (4) ◽  
pp. 47 ◽  
Author(s):  
Atul M. Kadam ◽  
Shitalkumar S. Patil

Objective: The purpose of current study was to improve physicochemical properties such as micrometric, compressibility and solubility of linezolid (LNZ) by preparing crystallo-co-agglomerates (CCA) in the presence of polymer for the enhancement of overall physicochemical performance.Methods: The process of agglomeration involves the use of dichloromethane (DCM) as a good solvent and chloroform as bridging liquid were used to prepare agglomerates. Agglomerates were characterised in the solid state using several techniques such as Scanning electronic microscopy(SEM), Fourier transformation infrared spectroscopy (FTIR), X-ray powder diffraction analysis (XRPD) The agglomerates obtained were evaluated for micrometric, mechanical, deformation, compressibility and drug release properties.Results: It was found that micrometric properties and dissolution characteristics of agglomerates were significantly improved than that of pure linezolid. Solubility was found to be increased than pure linezolid. The solubility of crystallo co-agglomerates was found an increase in 5 fold 3 fold and 3.7 fold for PVPK30 (0.5%), PVPK30 (0.25%) and PVPK30 (0.75%) respectively. The angle of repose for all batches was found between 22 ° to 30 °Carrs index was between 12.27±0.6 to 18.73±0.4 and Hausners ratio Near to 1, indicated good flow ability of agglomerates. The time required for drug release over a period of 60 min, is as LA1>LA2>LA3. LA3 shows fast drug release than LA1 and LA2, due to solubilization of drug due to more concentration of PVPK30 and less concentration of talc.Conclusion: Based on the above results, it was revealed that CCA of linezolid prepared with DCM and HPMC (Hydroxypropyl methyl cellulose)/PEG (Polyethylene glycol)/PVP (Polyvinylpyrrolidone) K30 exhibited improved micrometric properties, compressibility and in addition to improving solubility and dissolution rate.


2012 ◽  
Vol 588-589 ◽  
pp. 104-107
Author(s):  
Qing Tian Li

This paper uses transmission electron microscope technology, studies microcosmic structure’ s feature of BN fiber, clarifies existing crystal structure’s state of BN fiber during its producing and transform course. It is studied that BN fiber has a sound mechanical properties, which most of crystalline phase is turbine layer phase and whose nitrogen is high and size is small .During the course of BN fiber’s producing, adding suitable tension from axial can promote directional arrange of BN fiber’s surface crystalline grain and put forward the improving direction of manufacturing technology in order to improve materials’ mechanical properties. BN fiber(indicated by BNf) is a kind of new inorganic material. Because of its fine stable, corrosion-resisting, anti-oxidant properties and high ability of absorbing neutron and so on, it is attached more and more importance and it get constant development and usefulness. BNf and ceramics, metal, various compound materials made of resin material can be used in metallurgy, electron, aviation etc science and technology fields. But the intensity of BNf and its elasticity modulus are lower than basic fundamental material. When BNf’s compound material get fine properties above mentioned, the mechanics properties of the material will drop. So its application degree will be limited to a certain extent. In order to improve and raise BNf’s mechanics properties, this essay makes use of electron micro analytical technology to study its microcosmic structure and mechanics properties, providing scientific basis for designing reasonable manufacturing technology.


2007 ◽  
Vol 39 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Z. Andjic ◽  
M. Korac ◽  
Z. Kamberovic ◽  
A. Vujovic ◽  
M. Tasic

In this paper synthesis of a composite based on Cu-Al2O3 by a thermo-chemical method is shown along with a comparative analysis of the properties of the obtained nanocomposite sintered samples, which are characterized by a good combination of electric-mechanical properties, suitable for work at elevated temperatures. Ultra fine and nanocrystal powder Cu-Al2O3 is obtained by a chemical method, starting from water solutions of nitrates up to achieving the requested composition with 3 and 5% of Al2O3. Synthesis of composite powders has been developed through several stages: drying by spraying, oxidation of the obtained powder of precursor and then reduction by hydrogen until the final composition of nanocomposite powder is achieved. After characterization of the obtained powders, which comprised examination by the Scanning Electronic Microscopy (SEM) method and X-ray-structure analysis (RDA), the powders were compacted with compacting pressure of 500 MPa. Sintering of the obtained samples was performed in the hydrogen atmosphere in isothermal conditions at temperatures of 800 and 900oC for 30, 60, 90 and 120 minutes. Characterization of the obtained Cu-Al2O3 of the nanocomposite sintered system comprised examination of microstructure by the Scanning Electronic Microscopy (SEM), as well as examining of electric mechanical properties. The obtained results show a homogenous distribution of dispersoides in the structure, as well as good mechanical and electric properties. .


2017 ◽  
Vol 17 (2) ◽  
pp. 203 ◽  
Author(s):  
Endah Retnaningrum ◽  
Wahyu Wilopo

The present research was conducted to investigate sulphate and manganese removal from synthetic wastewater. The continuous laboratory scale of down-flow fluidized-bed reactor (DFBR) using sulphate reducing bacteria (SRB) consortium and Indonesian natural zeolite as a bacterial support material was designed. At 9 days operation, maximum sulphate and manganese removal was observed to be 23% and 15.4%, respectively. The pH values were also changed to neutral. The population of SRB increased which effect on the raising of their activity for removing sulphate and manganese. Using the scanning electronic microscopy (SEM), it was observed that natural zeolite possesses excellent physical characteristics as a bacterial support material in DFBR. The imaging SEM result of SRB consortium on zeolite surface clearly showed the developed SRB biofilm on that particle. Analysis result of EDX confirmed that manganese was precipitated as manganese–sulfides.


2021 ◽  
Vol 13 (16) ◽  
pp. 9269
Author(s):  
Saddam Hussein Abo Sabah ◽  
Luis Hii Anneza ◽  
Mohd Irwan Juki ◽  
Hisham Alabduljabbar ◽  
Norzila Othman ◽  
...  

This study investigated the optimization of the bioconcrete engineering properties and durability as a response of the calcium lactate (CL) content (0.22–2.18 g/L) and curing duration (7–28 days) using the response surface methodology (RSM). Scanning electronic microscopy (SEM) was conducted to evaluate the microstructure of calcium precipitated inside the bioconcrete. The results indicated that the optimal conditions for the engineering properties of concrete and durability were determined at 2.18 g/L of CL content after 23.4 days. The actual and predicted values of the compressive strength, splitting tensile strength, flexural strength, and water absorption were 43.51 vs. 43.43, 3.19 vs. 3.19, 6.93 vs. 5.50, and 7.55 vs. 7.55, respectively, with a level of confidence exceeding 95%. The scanning electron microscope (SEM) images and energy-dispersive X-ray spectroscopy (EDX) proved that the amount of calcium increased with the increase in CL content up to 2.81 g/L at 23.4 days, reducing the pores inside the concrete and making it a great potential option for healing of concrete structures.


Sign in / Sign up

Export Citation Format

Share Document