Electron Micro Technology Study on BN Fiber’s Microcosmic Structure and Mechanics Properties

2012 ◽  
Vol 588-589 ◽  
pp. 104-107
Author(s):  
Qing Tian Li

This paper uses transmission electron microscope technology, studies microcosmic structure’ s feature of BN fiber, clarifies existing crystal structure’s state of BN fiber during its producing and transform course. It is studied that BN fiber has a sound mechanical properties, which most of crystalline phase is turbine layer phase and whose nitrogen is high and size is small .During the course of BN fiber’s producing, adding suitable tension from axial can promote directional arrange of BN fiber’s surface crystalline grain and put forward the improving direction of manufacturing technology in order to improve materials’ mechanical properties. BN fiber(indicated by BNf) is a kind of new inorganic material. Because of its fine stable, corrosion-resisting, anti-oxidant properties and high ability of absorbing neutron and so on, it is attached more and more importance and it get constant development and usefulness. BNf and ceramics, metal, various compound materials made of resin material can be used in metallurgy, electron, aviation etc science and technology fields. But the intensity of BNf and its elasticity modulus are lower than basic fundamental material. When BNf’s compound material get fine properties above mentioned, the mechanics properties of the material will drop. So its application degree will be limited to a certain extent. In order to improve and raise BNf’s mechanics properties, this essay makes use of electron micro analytical technology to study its microcosmic structure and mechanics properties, providing scientific basis for designing reasonable manufacturing technology.

2012 ◽  
Vol 588-589 ◽  
pp. 108-110
Author(s):  
Qing Tian Li

The microstructure characteristics of Si3N4/nanometer SiC multiphase ceramics material was studied by electronic microscopy, and the different of the nanometer multiphase and the single-phase Si3N4 ceramics microstructure was analyzed. The relations of the multiphase ceramics material mechanical properties and the microstructure were discussed. The nanometer grain in material restrain Si3N4 crystallinity, improve the mechanical properties of material. Nanometer multiphase ceramics is a new kind of ceramics material which developed in several years, in which Nanometer crystalline grain is smaller than 500nm, because of its small crystalline grain and interface out of order, it has much better feature than that of traditional ceramics materials, it is one of directions on which ceramics material develop in future[1]. The study shows, the temperature indoor strength and toughness is higher 2-3 times than single set material in nanometer multiphase ceramics, at temperature indoors, toughness, strength and anti-creep etc improve a lot[2]. Use high resolving power analyzing technology and electron diffraction analyzing technology of transmission electron microscope can distinguish crystal size, appearance distribution form, dislocation and crystal boundary phase of different material in one sample, in the order to study deeply the relation between microcosmic structure feature of the material and mechanical properties and valuable information to improve material.


2019 ◽  
pp. 152808371987700
Author(s):  
Niuniu Chen ◽  
Sainan Wei ◽  
Bao Shi ◽  
Ruosi Yan ◽  
Xianghong Li ◽  
...  

This study fabricated flexible radar-absorbing knitted compound materials by weft knitting and blending ferromagnetic nickel micron-fibers and cotton fiber into structures with a concave–convex surface, including rhombic, mat, wavy, and leno stitches. The electromagnetic wave-absorbing capability and mechanical properties of the flexible radar-absorbing knitted compound materials were evaluated. The results showed that the rhombic, mat, and wavy stitches displayed high mechanical properties with high bursting strength and there were no significant differences among them. The rhombic stitch flexible radar-absorbing knitted compound material with a ferromagnetic nickel micron-fiber content of 14% had a maximum bandwidth of 13 GHz and achieved a minimum reflectance of −20 dB at 7 GHz, which was 150% that of mat fabric, and 200% that of wavy fabric and leno fabric. This was ascribed to the fact that the concave–convex surface with regular diamond-shaped block improved the dispersion of the electromagnetic wave, weakened the wave strength, and increased the interference. Therefore, the rhombic stitch flexible radar-absorbing knitted compound material was the most suitable for flexible radar-absorbing material in this study. The development of flexible radar-absorbing materials, by combining aerospace technology, military technology and textile technology, is important for the application in stealth of aircraft and weapons.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
Jun Liu ◽  
Katie E. Gunnison ◽  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

The interfacial structure between the organic and inorganic phases in biological hard tissues plays an important role in controlling the growth and the mechanical properties of these materials. The objective of this work was to investigate these interfaces in nacre by transmission electron microscopy. The nacreous section of several different seashells -- abalone, pearl oyster, and nautilus -- were studied. Nacre is a laminated composite material consisting of CaCO3 platelets (constituting > 90 vol.% of the overall composite) separated by a thin organic matrix. Nacre is of interest to biomimetics because of its highly ordered structure and a good combination of mechanical properties. In this study, electron transparent thin sections were prepared by a low-temperature ion-beam milling procedure and by ultramicrotomy. To reveal structures in the organic layers as well as in the interfacial region, samples were further subjected to chemical fixation and labeling, or chemical etching. All experiments were performed with a Philips 430T TEM/STEM at 300 keV with a liquid Nitrogen sample holder.


2003 ◽  
Vol 778 ◽  
Author(s):  
Rajdip Bandyopadhyaya ◽  
Weizhi Rong ◽  
Yong J. Suh ◽  
Sheldon K. Friedlander

AbstractCarbon black in the form of nanoparticle chains is used as a reinforcing filler in elastomers. However, the dynamics of the filler particles under tension and their role in the improvement of the mechanical properties of rubber are not well understood. We have studied experimentally the dynamics of isolated nanoparticle chain aggregates (NCAs) of carbon made by laser ablation, and also that of carbon black embedded in a polymer film. In situ studies of stretching and contraction of such chains in the transmission electron microscope (TEM) were conducted under different maximum values of strain. Stretching causes initially folded NCA to reorganize into a straight, taut configuration. Further stretching leads to either plastic deformation and breakage (at 37.4% strain) or to a partial elastic behavior of the chain at small strains (e.g. 2.3% strain). For all cases the chains were very flexible under tension. Similar reorientation and stretching was observed for carbon black chains embedded in a polymer film. Such flexible and elastic nature of NCAs point towards a possible mechanism of reinforcement of rubber by carbon black fillers.


Author(s):  
Romaneh Jalilian ◽  
David Mudd ◽  
Neil Torrez ◽  
Jose Rivera ◽  
Mehdi M. Yazdanpanah ◽  
...  

Abstract The sample preparation for transmission electron microscope can be done using a method known as "lift-out". This paper demonstrates a method of using a silver-gallium nanoneedle array for a quicker sharpening process of tungsten probes with better sample viewing, covering the fabrication steps and performance of needle-tipped probes for lift-out process. First, an array of high aspect ratio silver-gallium nanoneedles was fabricated and coated to improve their conductivity and strength. Then, the nanoneedles were welded to a regular tungsten probe in the focused ion beam system at the desired angle, and used as a sharp probe for lift-out. The paper demonstrates the superior mechanical properties of crystalline silver-gallium metallic nanoneedles. Finally, a weldless lift-out process is described whereby a nano-fork gripper was fabricated by attaching two nanoneedles to a tungsten probe.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Przemysław Snopiński ◽  
Mariusz Król ◽  
Marek Pagáč ◽  
Jana Petrů ◽  
Jiří Hajnyš ◽  
...  

AbstractThis study investigated the impact of the equal channel angular pressing (ECAP) combined with heat treatments on the microstructure and mechanical properties of AlSi10Mg alloys fabricated via selective laser melting (SLM) and gravity casting. Special attention was directed towards determining the effect of post-fabrication heat treatments on the microstructural evolution of AlSi10Mg alloy fabricated using two different routes. Three initial alloy conditions were considered prior to ECAP deformation: (1) as-cast in solution treated (T4) condition, (2) SLM in T4 condition, (3) SLM subjected to low-temperature annealing. Light microscopy, transmission electron microscopy, X-ray diffraction line broadening analysis, and electron backscattered diffraction analysis were used to characterize the microstructures before and after ECAP. The results indicated that SLM followed by low-temperature annealing led to superior mechanical properties, relative to the two other conditions. Microscopic analyses revealed that the partial-cellular structure contributed to strong work hardening. This behavior enhanced the material’s strength because of the enhanced accumulation of geometrically necessary dislocations during ECAP deformation.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2367
Author(s):  
Junhyuk Son ◽  
Dong-Yurl Yu ◽  
Yun-Chan Kim ◽  
Shin-Il Kim ◽  
Min-Su Kim ◽  
...  

In this study, the interfacial reactions and mechanical properties of solder joints after multiple reflows were observed to evaluate the applicability of the developed materials for high-temperature soldering for automotive electronic components. The microstructural changes and mechanical properties of Sn-Cu solders regarding Al(Si) addition and the number of reflows were investigated to determine their reliability under high heat and strong vibrations. Using differential scanning calorimetry, the melting points were measured to be approximately 227, 230, and 231 °C for the SC07 solder, SC-0.01Al(Si), and SC-0.03Al(Si), respectively. The cross-sectional analysis results showed that the total intermetallic compounds (IMCs) of the SC-0.03Al(Si) solder grew the least after the as-reflow, as well as after 10 reflows. Electron probe microanalysis and transmission electron microscopy revealed that the Al-Cu and Cu-Al-Sn IMCs were present inside the solders, and their amounts increased with increasing Al(Si) content. In addition, the Cu6Sn5 IMCs inside the solder became more finely distributed with increasing Al(Si) content. The Sn-0.5Cu-0.03Al(Si) solder exhibited the highest shear strength at the beginning and after 10 reflows, and ductile fracturing was observed in all three solders. This study will facilitate the future application of lead-free solders, such as an Sn-Cu-Al(Si) solder, in automotive electrical components.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Xianjie Yuan ◽  
Xuanhui Qu ◽  
Haiqing Yin ◽  
Zaiqiang Feng ◽  
Mingqi Tang ◽  
...  

This present work investigates the effects of sintering temperature on densification, mechanical properties and microstructure of Al-based alloy pressed by high-velocity compaction. The green samples were heated under the flow of high pure (99.99 wt%) N2. The heating rate was 4 °C/min before 315 °C. For reducing the residual stress, the samples were isothermally held for one h. Then, the specimens were respectively heated at the rate of 10 °C/min to the temperature between 540 °C and 700 °C, held for one h, and then furnace-cooled to the room temperature. Results indicate that when the sintered temperature was 640 °C, both the sintered density and mechanical properties was optimum. Differential Scanning Calorimetry, X-ray diffraction of sintered samples, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, and Transmission Electron Microscope were used to analyse the microstructure and phases.


2016 ◽  
Vol 61 (2) ◽  
pp. 761-766 ◽  
Author(s):  
A. Zieliński ◽  
M. Sroka ◽  
A. Hernas ◽  
M. Kremzer

Abstract The HR3C is a new steel for pressure components used in the construction of boilers with supercritical working parameters. In the HR3C steel, due to adding Nb and N, the compounds such as MX, CrNbN and M23C6 precipitate during service at elevated temperature, resulting in changes in mechanical properties. This paper presents the results of microstructure investigations after ageing at 650, 700 and 750 °C for 5,000 h. The microstructure investigations were carried out using scanning and transmission electron microscopy. The qualitative and quantitative identification of the existing precipitates was carried out using X-ray analysis of phase composition. The effect elevated temperature on microstructure and mechanical properties of the examined steel was described.


Sign in / Sign up

Export Citation Format

Share Document