scholarly journals An Experimental Analysis of the Electrical Parameter Variation of a Photovoltaic Module

2020 ◽  
Author(s):  
Hugo Nunes ◽  
Maria Do Rosário Calado ◽  
Sílvio Mariano ◽  
José Pombo

Photovoltaic (PV) energy has been asserting itself in recent years as a true alternative for the electricity production in the future. It is well known that the accuracy of PV parameters is crucial to achieving optimal control of PV systems under any operating conditions. Although many attempts have been made to study the operating ranges of PV parameters, this remains a  current research topic given the diversity of  PV technologies. In this paper, the PV parameters variation with irradiance and temperature levels is experimentally analysed for a polycrystalline (poly-Si) silicon PV module. The experiment considers experimental data from 130 I-V characteristic curves measured over a typical day, considering several irradiance and temperature levels in the range 29–1023 W/m2 and 19–68 °C, respectively. The results show that PV parameters vary considerably with irradiance and temperature levels for poly-Si technology. Keywords: Photovoltaic module, Photovoltaic parameters, Singe-diode model, Irradiance and temperature influence

2006 ◽  
Vol 128 (3) ◽  
pp. 349-353 ◽  
Author(s):  
A. T. Naveed ◽  
E. C. Kang ◽  
E. J. Lee

The electrical power generated by a polycrystalline silicon photovoltaic (PV) module mounted on an unglazed transpired solar collector (UTC) has been studied and compared to that of a PV module without UTC for a quantitative analysis of electrical output and its role in reducing the simple payback periods of photovoltaic electrical systems. A 75W polycrystalline silicon PV module was fixed on an UTC in front of the ventilation fan, and effectiveness of cooling by means of the forced ventilation at the rate of 160CFM was monitored. The temperature reduction under forced ventilation was in the range of 3-9°C with a 5% recovery in the electrical output power on a typical day of the month of February 2005. The simulated and measured electrical power outputs are in reasonable agreement with root-mean-square error of 2.40. The life cycle assessment of a hypothetical PV system located at Daejeon, South Korea and consisting of 3kW PV modules fixed on a 50m2 UTC shows that with a possible reduction of 3-9°C in the operating temperatures, the system requires three 75W fewer PV modules. The simple payback period of PV system is reduced from 23yearsto15years when integrated into an UTC air heating system.


Author(s):  
zhang caixia ◽  
Honglie Shen ◽  
Jun Chen ◽  
Hua LI

Abstract Partial shading is very common in photovoltaic (PV) systems. The mismatch losses and hot-spot effects caused by partial shading can not only affect the output power of a solar system, but also can bring security and reliability problems. This paper centers on the silicon crystalline PV module technology subjected to operating conditions with some cells partially or fully shaded. A comparison of the electrical and hot-pot performance results for four different connection mode PV modules without shading and with partial or full shading is presented. Bypass diode of different modules would start up in the different conditions with increasing shading area. We found that the regular half-cell module degraded about 60% than its non-shaded power, which is about 30% less than the other three modules, when the short edges of these modules were shaded. The highest hot-spot temperature of the regular half-cell module was 75.5C, which is the lowest among the four modules before diode started up.


Author(s):  
I. M. Abdelqawee ◽  
Ayman Y. Yousef ◽  
Khaled M. Hasaneen ◽  
H. G. Hamed ◽  
Maged N. F. Nashed

<p> In this paper, the unknown parameters of the photovoltaic (PV) module are determined using Genetic Algorithm (GA) method. This algorithm based on minimizing the absolute difference between the maximum power obtained from module datasheet and the maximum power obtained from the mathematical model of the PV module, at different operating conditions. This method does not need to initial values, so these parameters of the PV module are easily obtained with high accuracy. To validate the proposed method, the results obtained from it are compared with the experimental results obtained from the PV module datasheet for different operating conditions. The results obtained from the proposed model are found to be very close compared to the results given in the datasheet of the PV module.</p>


Author(s):  
Nadia Bouaziz ◽  
Arezki Benfdila ◽  
Ahcene Lakhlef

The present paper deals with the development of a simulation model for predicting the performances of a solar photovoltaic (PV) system operating under current meteorological conditions at the site location. The proposed model is based on the cell equivalent circuit including a photocurrent source, a diode, a series and shunt resistances. Mathematical expressions developed for modeling the PV generator performances are based on current-voltage characteristic of the considered modules. The developed model allows the prediction of PV cell (module) behavior under different physical and environmental parameters. The model can be extended to extract physical parameters for a given solar PV module as a function of temperature and solar irradiation. A typical 260 W solar panel developed by LG Company was used for model evaluation using Newton-Raphson approach under MATLAB environment in order to analyze its behavior under actual operating conditions. Comparison of our results with data taken from the manufacturer’s datasheet shows good agreement and confirms the validity of our model. Hence, the proposed approach can be an alternative to extract different parameters of any PV module to study and predict its performances.


2021 ◽  
Author(s):  
Issa Faye ◽  
Ababacar Ndiaye ◽  
Elkhadji Mamadou

The variation of the incidence angle over the year is an important parameter determined the performance of the module. The standard orientation of the module or a PV system, the perpendicular positioning of the sun to the module’s surface occurs twice a year. In outdoor exposed, angular losses of the module decrease the output of the PV or the system of PV. Although these losses are not always negligible, they are commonly not taken into account when correcting the electrical characteristics of the PV module or estimating the energy production of PV systems. This chapter is focused on the measurement of the angular response and spectral radiation (global and direct radiation) of solar cells based on two different silicon technologies, monocrystalline textured (m-Si) and non textured (mc-Si). The analysis of the source of deviation from the theoretical response, especially those due to the surface reflectance. As main contributions, the effects of glass encapsulation on the angular response of the modules are investigated by comparing the electrical parameter of the textured module to no textured and quantify electrical angular losses in this measurement area.


2021 ◽  
Vol 83 (6) ◽  
pp. 1-17
Author(s):  
Mohsin Ali Koondhar ◽  
Irfan Ali Channa ◽  
Sadullah Chandio ◽  
Muhammad Ismail Jamali ◽  
Abdul Sami Channa ◽  
...  

The effect of irradiance and increase of temperature on the back surface of the PV module would decrease the standardized efficiency of PV. To overcome this problem observed results of solar module (ORSM) and Newton Raphson’s (iterative) methods have been proposed in this research. This article compares ORSM and iterative methods of changing the specifications of a single diode model (SDM) extracted from a PV module beneath standard test conditions (STC) to calculate irradiance and various operating conditions. To make this comparison, the exact value of each diode parameter on the STC is essential. These are achieved by accepted algebraic values and iterative techniques. Newton Raphson’s technique has been proven to be the mainly precise method to find these specifications in STC. Therefore, these specifications are used to different techniques that change the parameters of an SDM with radiation and temperature. The MATLAB model is designed to assess the conducting of individual techniques by PVM. The results are compared with the measured data, and the accuracy of photovoltaic module efficiency has been achieved through different technologies at different temperature and insolation levels.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6357
Author(s):  
Giovanni Cipriani ◽  
Antonino D’Amico ◽  
Stefania Guarino ◽  
Donatella Manno ◽  
Marzia Traverso ◽  
...  

This paper proposes an innovative approach to classify the losses related to photovoltaic (PV) systems, through the use of thermographic non-destructive tests (TNDTs) supported by artificial intelligence techniques. Low electricity production in PV systems can be caused by an efficiency decrease in PV modules due to abnormal operating conditions such as failures or malfunctions. The most common performance decreases are due to the presence of dirt on the surface of the module, the impact of which depends on many parameters and conditions, and can be identified through the use of the TNDTs. The proposed approach allows one to automatically classify the thermographic images from the convolutional neural network (CNN) of the system, achieving an accuracy of 98% in tests that last a couple of minutes. This approach, compared to approaches in literature, offers numerous advantages, including speed of execution, speed of diagnosis, reduced costs, reduction in electricity production losses.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3226 ◽  
Author(s):  
Nader Anani ◽  
Haider Ibrahim

This paper presents a concise discussion and an investigation of the most literature-reported methods for modifying the lumped-circuit parameters of the single-diode model (SDM) of a photovoltaic (PV) module, to suit the prevailing climatic conditions of irradiance and temperature. These parameters provide the designer of a PV system with an essential design and simulation tool to maximize the efficiency of the system. The parameter modification methods were tested using three commercially available PV modules of different PV technologies, namely monocrystalline, multicrystalline, and thin film types. The SDM parameters of the three test modules were extracted under standard test conditions (STC) using a well-established numerical technique. Using these STC parameters as reference values, the parameter adjustment methods were subsequently deployed to calculate the modified parameters of the SDM under various operating conditions of temperature and irradiance using MATLAB-based software. The accuracy and effectiveness of these methods were evaluated by a comparison between the calculated and measured values of the modified parameters.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1445 ◽  
Author(s):  
Massimo Merenda ◽  
Demetrio Iero ◽  
Riccardo Carotenuto ◽  
Francesco G. Della Corte

The design and testing phase of photovoltaic (PV) power systems requires time-consuming and expensive field-testing activities for the proper operational evaluation of maximum power point trackers (MPPT), battery chargers, DC/AC inverters. Instead, the use of a PV source emulator that accurately reproduces the electrical characteristic of a PV panel or array is highly desirable for in-lab testing and rapid prototyping. In this paper, we present the development of a low-cost microcontroller-based PV source emulator, which allows testing the static and dynamic performance of PV systems considering different PV module types and variable operating and environmental conditions. The novelty of the simple design adopted resides in using a low-cost current generator and a single MOSFET converter to reproduce, from a fixed current source, the exact amount of current predicted by the PV model for the actual load conditions. The I–V characteristic is calculated in real-time using a single diode exponential model under variable and user-selectable operating conditions. The proposed method has the advantage of reducing noise from high-frequency switching, reducing or eliminating ripple and the demand for output filters, and it does not require expensive DC Power source, providing high accuracy results. The fast response of the system allows the testing of very fast MPPTs algorithms, thus overcoming the main limitations of state-of-art PV source emulators that are unable to respond to the quick variation of the load. Experimental results carried on a hardware prototype of the proposed PV source emulator are reported to validate the concept. As a whole result, an average error of ±1% in the reproduction of PV module I–V characteristics have been obtained and reported.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4278
Author(s):  
Jaeun Kim ◽  
Matheus Rabelo ◽  
Siva Parvathi Padi ◽  
Hasnain Yousuf ◽  
Eun-Chel Cho ◽  
...  

Photovoltaic (PV) modules are generally considered to be the most reliable components of PV systems. The PV module has a high probability of being able to perform adequately for 30 years under typical operating conditions. In order to evaluate the long-term performance of a PV module under diversified terrestrial conditions, outdoor-performance data should be used. However, this requires a wait of 25 years to determine the module reliability, which is highly undesirable. Thus, accelerated-stress tests performed in the laboratory by mimicking different field conditions are important for understanding the performance of a PV module. In this paper, we discuss PV-module degradation types and different accelerated-stress types that are used to evaluate the PV-module reliability and durability for life expectancy before using them in the real field. Finally, prevention and correction measures are described to minimize economic losses.


Sign in / Sign up

Export Citation Format

Share Document