scholarly journals Effect of Growth Promoting Bacteria on the Growth Rate and Lipid Content of Microalgae Chorella sp in Sludge Liquor of Anaerobic Digester of Dairy Manure

Author(s):  
Wahyunanto A. Nugroho ◽  
Fatma R. Nurlaili ◽  
Yusuf Hendrawan ◽  
Bambang D. Argo
Plants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 31 ◽  
Author(s):  
Maria N. Metsoviti ◽  
George Papapolymerou ◽  
Ioannis T. Karapanagiotidis ◽  
Nikolaos Katsoulas

In this research, the effect of solar irradiance on Chlorella vulgaris cultivated in open bioreactors under greenhouse conditions was investigated, as well as of ratio of light intensity in the 420–520 nm range to light in the 580–680 nm range (I420–520/I580–680) and of artificial irradiation provided by red and white LED lamps in a closed flat plate laboratory bioreactor on the growth rate and composition. The increase in solar irradiance led to faster growth rates (μexp) of C. vulgaris under both environmental conditions studied in the greenhouse (in June up to 0.33 d−1 and in September up to 0.29 d−1) and higher lipid content in microalgal biomass (in June up to 25.6% and in September up to 24.7%). In the experiments conducted in the closed bioreactor, as the ratio I420–520/I580–680 increased, the specific growth rate and the biomass, protein and lipid productivities increased as well. Additionally, the increase in light intensity with red and white LED lamps resulted in faster growth rates (the μexp increased up to 0.36 d−1) and higher lipid content (up to 22.2%), while the protein, fiber, ash and moisture content remained relatively constant. Overall, the trend in biomass, lipid, and protein productivities as a function of light intensity was similar in the two systems (greenhouse and bioreactor).


2005 ◽  
Vol 52 (1-2) ◽  
pp. 525-530 ◽  
Author(s):  
D.H. Zitomer ◽  
T.C. Bachman ◽  
D.S. Vogel

A thermophilic anaerobic digester with ultrafilter (TADU) for solids separation offers potential advantages of higher VS destruction, biomass retention, and pathogen removal. However, potential disadvantages include ultrafilter fouling, decreasing flux, and high VFA concentrations. In this study, a thermophilic anaerobic digester coupled to a sintered titanium, cross-flow ultrafilter was operated for over five months. Dairy manure was digested (HRT of 23 days). The filtrate VFA concentration was low (220 mg/L as HAc), average VS destruction was 49%, and a low average effluent fecal coliform concentration of 102 MPN/100 mL was observed. The low coliform value may be beneficial if dewatered biosolids are used for livestock bedding since low pathogen counts help prevent mastitis. Ultrafilter fluxes of 40–80 L/m2-hr were maintained by cleaning using caustic (3.5% NaOH) followed by water and acid (3% phosphoric acid). Sand from livestock bedding was found to damage the pump and ultrafilter. If TADU were implemented at full scale, then replacing sand bedding with dewatered biosolids should be considered.


2008 ◽  
Vol 99 (5) ◽  
pp. 963-970 ◽  
Author(s):  
Marjo Misikangas ◽  
Heidi Tanayama ◽  
Johanna Rajakangas ◽  
Jere Lindén ◽  
Anne-Maria Pajari ◽  
...  

The mechanism that drives the growth of some colonic adenomas towards malignancy, while permitting others to remain for decades in quiescence, remains unknown. Diets can alter the growth rate of intestinal tumours but it is still unknown whether diets are able to alter the molecular biology of these adenomas in a way that predicts further outcome. To address this issue we fed Min/+ mice with two diets known to lead to different adenoma outcomes: a high-fat control diet (n 15) or a high-fat inulin-enriched (10 % w/w) diet (n 13). To study the effect of diet on cell signalling during adenoma growth, the adenomas of each Min/+ mouse were divided into three size-categories, and the levels of β-catenin, E-cadherin, cyclin D1 and matrix metalloproteinase-9, which are known to be involved in colon tumorigenesis, were determined. The growth-promoting inulin diet resulted in more large adenomas than the control feeding (P = 0·003) and doubled the total area of the adenomas (P = 0·008). The inulin diet increased the expression of nuclear β-catenin (P = 0·004) and its target cyclin D1 (P = 0·017) as the adenomas increased in size from small to large, indicating the presence of an accelerated cancerous process. Neither phenomenon was seen in the control group during adenoma growth. Our results suggest that in addition to the number, size, and growth rate of adenomatous polyps, the signalling pattern of the adenomas should also be considered when evaluating preventive dietary strategies.


2020 ◽  
Vol 10 (1) ◽  
pp. 362
Author(s):  
Daniela Lopez-Betancur ◽  
Ivan Moreno ◽  
Carlos Guerrero-Mendez ◽  
Domingo Gómez-Meléndez ◽  
Manuel de J. Macias P. ◽  
...  

Light stimulation and biofloc technology can be combined to improve the efficiency and sustainability of tilapia production. A 73-day pilot experiment was conducted to investigate the effect of colored light on growth rates and nutritional composition of the Nile tilapia fingerlings (Oreochromis niloticus) in biofloc systems. The effect of colored light on the nutritional composition of bioflocs as a food source for fish was measured. Three groups were illuminated in addition to natural sunlight with colored light using RGB light emitting diodes (LEDs) with peak wavelengths (λ) of 627.27 nm for red (R), 513.33 nm for green (G), and 451.67 nm for blue (B) light. LED light intensity was constant (0.832 mW / cm 2 ), and had an 18-h photoperiod of light per day throughout the study. The control group was illuminated only with natural sunlight (natural). Tilapia had an average initial weight of 0.242 g. There was a significant effect of colored light on tilapia growth and composition. The R group showed the best growth rate, highest survival, and highest lipid content. The B group showed homogeneous growth with the lowest growth rate and lipid content, but the highest protein level. On the other hand, the biofloc composition was influenced by the green light in the highest content of lipids, protein, and nitrogen-free extract.


Author(s):  
M. J. Rankin ◽  
T. A. Trabold ◽  
A. A. Williamson ◽  
M. Augustine

Anaerobic digestion is a waste-to-energy conversion process that offers potential economic and environmental benefits of organic waste diversion and renewable energy generation. However, these systems are often not feasible for small-to-medium size food processors, due to the significant capital investment involved. The key objective of this study is to identify the volume and composition of dairy manure and liquid-phase food manufacturing waste streams available in New York State (NYS) to make co-digestion of multiple feedstocks in centralized anaerobic digester facilities an economically attractive alternative. Organic waste volume and property data were obtained via Freedom of Information Law (FOIL) requests at the county and municipal levels for each of the 62 counties in NYS. Spatial analyses of dairy confined animal feeding operations (CAFO) locations relative to food manufacturing facility locations were analyzed using Microsoft MapPoint imaging software, which identified concentrations of high strength liquid-phase waste in the upstate corridor extending between Buffalo and Albany. The results show that if anaerobically digested, dairy CAFO manure and food manufacturing waste can contribute significantly to the State’s renewable energy portfolio. A laboratory scale two-phase anaerobic digester (bioDrillTS-AD200©) can help establish the correlation between waste properties (e.g. total solids, etc.) and quantity and quality of biogas produced.


Sign in / Sign up

Export Citation Format

Share Document