scholarly journals Geochemical and hydrogeological parameters informativity in oil and gas geology

Georesursy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 214-220
Author(s):  
Maria A. Bolshakova ◽  
Anna V. Korzun ◽  
Antonina V. Stoupakova ◽  
Roman S. Sautkin ◽  
Anton G. Kalmykov ◽  
...  

The article discusses the fundamental possibilities of using the results of geochemical and hydrogeochemical studies of organic matter, oils and waters in oil and gas geology, including for objects at the stage of development. It is shown that complex geochemical studies of oils and waters make it possible to get more correct conclusions about the presence or absence of fluid-dynamic connectivity of different horizons. Studies of organic matter and oils allow (by basin modeling instrument) to understand the contribution of different source rocks to formation of oils of different reservoirs. Hydrogeochemical studies of associated waters and waters used in the reservoir pressure maintenance system in a complex of works not only actively complements the knowledge about the presence or absence of fluid-dynamic connections between reservoirs and production objects, but also make it possible to predict, for example, salt deposition on equipment and in the reservoirs, and therefore allow you to prevent the possibility of unwanted salt deposition. The conclusions are based on the results of comprehensive geological and geochemical studies carried out by the authors for one of the deposits of the Krasnoleninsky arch of Western Siberia, which is at the development stage, as well as on the previous experience of the authors.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Olumuyiwa Adedotun Odundun

Organic geochemical studies and fossil molecules distribution results have been employed in characterizing subsurface sediments from some sections of Anambra Basin, southeastern Nigeria. The total organic carbon (TOC) and soluble organic matter (SOM) are in the range of 1.61 to 69.51 wt% and 250.1 to 4095.2 ppm, respectively, implying that the source rocks are moderately to fairly rich in organic matter. Based on data of the paper, the organic matter is interpreted as Type III (gas prone) with little oil. The geochemical fossils and chemical compositions suggest immature to marginally mature status for the sediments, with methyl phenanthrene index (MPI-1) and methyl dibenzothiopene ratio (MDR) showing ranges of 0.14–0.76 and 0.99–4.21, respectively. The abundance of 1,2,5-TMN (Trimethyl naphthalene) in the sediments suggests a significant land plant contribution to the organic matter. The pristane/phytane ratio values of 7.2–8.9 also point to terrestrial organic input under oxic conditions. However, the presence of C27 to C29 steranes and diasteranes indicates mixed sources—marine and terrigenous—with prospects to generate both oil and gas.


2003 ◽  
Vol 43 (1) ◽  
pp. 117 ◽  
Author(s):  
C.J. Boreham ◽  
J.E. Blevin ◽  
A.P. Radlinski ◽  
K.R. Trigg

Only a few published geochemical studies have demonstrated that coals have sourced significant volumes of oil, while none have clearly implicated coals in the Australian context. As part of a broader collaborative project with Mineral Resources Tasmania on the petroleum prospectivity of the Bass Basin, this geochemical study has yielded strong evidence that Paleocene–Eocene coals have sourced the oil and gas in the Yolla, Pelican and Cormorant accumulations in the Bass Basin.Potential oil-prone source rocks in the Bass Basin have Hydrogen Indices (HIs) greater than 300 mg HC/g TOC. The coals within the Early–Middle Eocene succession commonly have HIs up to 500 mg HC/g TOC, and are associated with disseminated organic matter in claystones that are more gas-prone with HIs generally less than 300 mg HC/g TOC. Maturity of the coals is sufficient for oil and gas generation, with vitrinite reflectance (VR) up to 1.8 % at the base of Pelican–5. Igneous intrusions, mainly within Paleocene, Oligocene and Miocene sediments, produced locally elevated maturity levels with VR up to 5%.The key events in the process of petroleum generation and migration from the effective coaly source rocks in the Bass Basin are:the onset of oil generation at a VR of 0.65% (e.g. 2,450 m in Pelican–5);the onset of oil expulsion (primary migration) at a VR of 0.75% (e.g. 2,700–3,200 m in the Bass Basin; 2,850 m in Pelican–5);the main oil window between VR of 0.75 and 0.95% (e.g. 2,850–3,300 m in Pelican–5); and;the main gas window at VR >1.2% (e.g. >3,650 m in Pelican–5).Oils in the Bass Basin form a single oil population, although biodegradation of the Cormorant oil has resulted in its statistical placement in a separate oil family from that of the Pelican and Yolla crudes. Oil-to-source correlations show that the Paleocene–Early Eocene coals are effective source rocks in the Bass Basin, in contrast to previous work, which favoured disseminated organic matter in claystone as the sole potential source kerogen. This result represents the first demonstrated case of significant oil from coal in the Australian context. Natural gases at White Ibis–1 and Yolla–2 are associated with the liquid hydrocarbons in their respective fields, although the former gas is generated from a more mature source rock.The application of the methodologies used in this study to other Australian sedimentary basins where commercial oil is thought to be sourced from coaly kerogens (e.g. Bowen, Cooper and Gippsland basins) may further implicate coal as an effective source rock for oil.


1982 ◽  
Vol 22 (1) ◽  
pp. 213 ◽  
Author(s):  
B. M. Thomas ◽  
D. G. Osborne ◽  
A. J. Wright

Ever since the early discoveries at Cabawin (1960) and Moonie (1961), the origin of oil and gas in the Surat/Bowen Basin has been a subject of speculation. Hydrocarbons have been found in reservoirs ranging in age from Permian to Early Jurassic; even fractured pre-Permian 'basement' rocks have occasionally recorded shows.Recent geochemical studies have identified rich source rocks within the Jurassic, Triassic and Permian sequences. The Middle Jurassic Walloon Coal Measures are thermally immature throughout the Surat Basin and are unlikely to have generated significant amounts of hydrocarbons. Lower Jurassic Evergreen Formation source rocks have reached 'nominal early maturity' (VR = 0.6) in parts of the basin. The Middle Triassic Moolayember Formation lies within the oil generation zone in the northern Taroom Trough. However, no oil has yet been confidently correlated with either a Jurassic or a Triassic source. On geochemical and geological grounds it is likely that most, if not all, of the hydrocarbons discovered to date were generated from Permian source rocks.The probability of finding gas as well as oil in Permian, Triassic or Jurassic reservoirs increases from south to north, in accord with organic maturity trends in the Permian of the Taroom Trough. On the narrow thrust-bounded eastern flank, vertical migration has occurred, resulting in oilfields at Moonie and Bennett. In contrast, extensive lateral migration of hydrocarbons across the gentle western flank of the basin is indicated by numerous small oil and gas fields on the Roma Shelf and Wunger Ridge.


2021 ◽  
Vol 43 (1) ◽  
pp. 93-128
Author(s):  
V.I. Isaev ◽  
A.O. Aleeva ◽  
G.A. Lobova ◽  
O.S. Isaeva ◽  
V.I. Starostenko

Commercial significance of the majority of Western Siberian oil fields is concerned with the Senomanian, Neocomian and, above all, Upper Jurassic horizons. For now, oil fields are at the late development stage and resource potential of the Jurassic horizon is strongly expired. Commercial potential of the pre-Jurassic (Paleozoic) rocks has been brought out throughout all territory of oil and gas province. Extensive work on estimation of the pre-Jurassic rocks oil and gas potential is performed in southeast, in the territory of Tomsk Region, within which 13 hydrocarbon deposits have been discovered in the Paleozoic. Original hypothesis of anomalousness of geophysical and petrophysical characteristics of the Jurassic layers — uniqueness of «indication» the Paleozoic deposits in geophysical parameters of overlaying Mezozoic-Cenozoic section was stated as a foundation of new prospecting criterion for the Paleozoic deposits. The Paleozoic formations are accepted as a complex with its own oil generating potential, which results in upward migration of hydrocarbon fluids. Additionally, downward direction of vertical interstratal hydrocarbon migration from the Jurassic source rocks into the pre-Jurassic complex is brought out. It was accepted as a conception that as in case of upward, so in case of downward fluid migration, processes of superposed epigenesis perform and lead to secondary epigenetic transformations of rocks of transit Jurassic layers, which result in their anomalous geophysical and petrophysical characteristics. This paper analyzes and compares geophysical and petrophysical characteristics of the Jurassic layers of different field types in Tomsk Region: without oil and gas potential in pre-Jurassic section, with commercial inflows from the pre-Jurassic complex and unknown type. Results of exploration electrical resistivity and carbonatization in the Jurassic layers of 200 wells and also spontaneous potential variation, electrical resistivity and natural radioactivity in Bazhenov suite confirm anomalousness of geophysical and petrophysical parameters of Jurassic rocks in case of pre-Jurassic deposits. This paper determines 6 geophysical and petrophysical characteristics of the Jurassic layers as predictive indicators for oil and gas potential estimation in pre-Jurassic section. Efficiency analysis of using predictive indicators for bringing out fields with and without deposits in the pre-Jurassic complex was performed for different prospecting cases in the research territory with account taken of possible complexing of indicators, their rank and actual availability. This paper states preference of indicators complexing. Application of a new prospecting criterion will improve efficiency of searching in new prioritized stratigraphic horizon — the Paleozoic, which contains unconventional oil.


1994 ◽  
Vol 34 (1) ◽  
pp. 279 ◽  
Author(s):  
Dennis Taylor ◽  
Aleksai E. Kontorovich ◽  
Andrei I. Larichev ◽  
Miryam Glikson

Organic rich shale units ranging up to 350 m in thickness with total organic carbon (TOC) values generally between one and ten per cent are present at several stratigraphic levels in the upper part of the Carpentarian Roper Group. Considerable variation in depositional environment is suggested by large differences in carbon:sulphur ratios and trace metal contents at different stratigraphic levels, but all of the preserved organic matter appears to be algal-sourced and hydrogen-rich. Conventional Rock-Eval pyrolysis indicates that a type I-II kerogen is present throughout.The elemental chemistry of this kerogen, shows a unique chemical evolution pathway on the ternary C:H:ONS diagram which differs from standard pathways followed by younger kerogens, suggesting that the maturation histories of Proterozoic basins may differ significantly from those of younger oil and gas producing basins. Extractable organic matter (EOM) from Roper Group source rocks shows a chemical evolution from polar rich to saturate rich with increasing maturity. Alginite reflectance increases in stepwise fashion through the zone of oil and gas generation, and then increases rapidly at higher levels of maturation. The increase in alginite reflectance with depth or proximity to sill contacts is lognormal.The area explored by Pacific Oil and Gas includes a northern area where the Velkerri Formation is within the zone of peak oil generation and the Kyalla Member is immature, and a southern area, the Beetaloo sub-basin, where the zone of peak oil generation is within the Kyalla Member. Most oil generation within the basin followed significant folding and faulting of the Roper Group.


2021 ◽  
Author(s):  
Mariya Sergeevna Shipaeva ◽  
Danis Karlovich Nurgaliev ◽  
Artem Aleksandrivich Zaikin ◽  
Vladislav Anatolevich Sudakov ◽  
Artur Albertovich Shakirov ◽  
...  

Abstract At the present stage of the hydrocarbon production process, most of the unique and largest fields in the world are at a late stage of development. Despite the active development and policy of a decarbonised economy, the demand for liquid and gaseous hydrocarbons remains high, while of inevitably growing the number of mature fields. The Volga-Ural oil and gas province today is an old oil and gas producing region, most of the fields have already entered the final stage of development. However, through the introduction and development of new technologies for oil extraction, monitoring of production and localization of reserves, the life of the fields can be extended. One of these technologies is geochemical monitoring of well production. Its goal is to optimize the development of mature fields on the basis of promptly obtained information about the state of the wells using geochemical studies of the formation fluid, allowing timely implementation of the necessary measures. Geochemical studies allow identifying the source of fluid entering the well, determining a violation in the wellbore structure, checking the tightness of downhole equipment for separate operation, and performing an area analysis of the area development efficiency. This type of research is relevant both in giant fields with a large stock of production wells, often characterized from a geological point of view by multilayer structure, with technological complexity, packing, wear of equipment and strings, in some cases the impossibility of running gauge for research, and in fields with low depletion. The possibilities of geochemistry for solving local operational problems in wells are shown. Several hydrogeological complexes have been studied, the change in the properties of the produced water during the development process is described. The concepts of the geochemical conditions in the hydrocarbon deposits that existed earlier are changing due to the development of these objects as a dynamic system, continuous injection of different types of water into the reservoir, the use of enhanced oil recovery methods and other technogenic impact associated with the development of reserves. The digital revolution and the modern development of the industry marked the beginning of the creation of the Digital Atlas of Groundwater, the development of specialized algorithms that allow processing large amounts of data.


Author(s):  
Yang Houqiang ◽  
E. V. Soboleva

In recent years, significant successes have been achieved in the search and exploration of oil and gas reservoirs in the Jurassic deposits on the eastern side of the Fukang depression, which is the least studied part of the Junggar oil and gas Basin. In order to find out the source of hydrocarbon generation, we studied source rocks, oil and oil-bearing sandstones (24 samples from 13 wells) from the Badaowan, Sangonghe, Xishanyao, Toutunhe and Qigu production beds of the Fukang depression research area. Based on these studies, the composition of the organic matter of the Jurassic source rocks, the properties and molecular composition of oils, as well as the characteristics of the composition of biomarkers in them are examined in detail. The results of research and interpretation of the data showed that the mudstones of the Badaowan formation were source rocks of oil from the Gumudi zone, the Fukan depression, the Bajiahai ledge and the Shaqi ledge.


2019 ◽  
Vol 98 ◽  
pp. 02007
Author(s):  
Rustam Mustaev ◽  
Javidan Ismailov ◽  
Uliana Serikova

This paper provides the results of geochemical studies with products of mud volcanoes conducted for a purpose of evaluating the generative potential of the South-Caspian basin. The kerogen types have been identified for different stratigraphic intervals and stages of the organic matter (OM) thermal maturity have been determined. A correlation has been established between the generative potential and the basin deposition and subsidence rate.


Author(s):  
E. A. Bakay ◽  
M. E. Smirnova ◽  
N. I. Korobova ◽  
D. V. Nadezhkin

Lithofacies of different genesis were determined within the Permian sequence, basing on analysis of core descriptions. The best reservoirs are associated with deltaic sand bodies. Permian source rocks with marine organic matter were distinguished. Initial organic matter parameters were estimated, initial good-excellent petroleum potential was suggested. Lithological-geochemical study results for core samples from one of the northern wells of Laptev Sea coast are published for the first time.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1425-1429
Author(s):  
Hai Yan Cheng ◽  
Yin Sheng Ma ◽  
Cheng Ming Yin ◽  
Yuan Yuan Yang

Shale of rich organic matter presents in Upper Carboniferous in Qaidam Basin, Northwest of China. Carboniferous shale thickness is between 100 ~ 300m in the Qaidam Basin, the shale includes silty mudstone shale, calcareous mudstone, shale and carbonaceous shale, and it is very favorable lithology type for shale gas. According to the shale organic geochemical analysis, the abundance of organic matter reaching the middle - good degree of hydrocarbon source rocks; the type of organic matter is mainly II2 and III type. The maturity of organic matter is mainly between 1 % -1.3 %. The Upper Carboniferous shale thermal evolution is in mature oil and gas stage. The Upper Carboniferous hydrocarbon-rich shale distribute stability, with great thickness. Shale gas potential in Upper Carboniferous is quite large.


Sign in / Sign up

Export Citation Format

Share Document