scholarly journals Modification of the tumour microenvironment via exosomal shedding of sphingosine 1-phosphate receptor 2 by breast cancer cells

Oncotarget ◽  
2018 ◽  
Vol 9 (57) ◽  
pp. 30938-30939 ◽  
Author(s):  
Stuart M. Pitson ◽  
Jason A. Powell
Impact ◽  
2020 ◽  
Vol 2020 (7) ◽  
pp. 16-18
Author(s):  
Chia-Chien Hsieh

It has long been established that diet and nutrition can have a significant impact on health and even help reduce the prevalence of chronic diseases. It makes sense that what we put into our bodies would have some bearing on how our bodies function. Indeed, the World Health Organization developed guidelines focusing on nutrient intake, with a view to reducing the global burden of disease related to obesity, diabetes, cardiovascular disease, several forms of cancer, osteoporosis and dental disease. One exciting area of research, that is little understood, is the potential efficacy of lunasin – a peptide found in soy, legume and some cereal grains – against certain types of cancer. Lunasin has shown potential in the prevention of cancers. It is able to do this by suppressing the proliferation and migration of cancer cells, and anti-inflammation in this tumour environment. A specific area of study within this is lunasin's ability to reduce obesity associated breast cancer development. Associate Professor Chia-Chien Hsieh, a researcher based at the Programs of Nutrition Science, School of Life Science, National Taiwan Normal University, current work is focused on the mechanism of lunasin's effect on the growth of breast cancer cells induced by obesity-associated inflammation. Her goal is to investigate the obesity-related breast cancer chemoprevention of lunasin, which might retard inflammatory responses around tumour microenvironment and even break the crosstalk of macrophages, adipocyte, and breast cancer cells. The aim being to provide potential strategies for ameliorating obesity-related ER(+) or ER(-) breast cancer development.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jones Gyamfi ◽  
Joo Hye Yeo ◽  
Doru Kwon ◽  
Byung Soh Min ◽  
Yoon Jin Cha ◽  
...  

AbstractAdipocytes influence breast cancer behaviour via fatty acid release into the tumour microenvironment. Co-culturing human adipocytes and breast cancer cells increased CD36 expression, with fatty acid import into breast cancer cells. Genetic ablation of CD36 attenuates adipocyte-induced epithelial-mesenchymal transition (EMT) and stemness. We show a feedforward loop between CD36 and STAT3; where CD36 activates STAT3 signalling and STAT3 binds to the CD36 promoter, regulating its expression. CD36 expression results in metabolic reprogramming, with a shift towards fatty acid oxidation. CD36 inhibition induces de novo lipogenesis in breast cancer cells. Increased CD36 expression occurs with increased FABP4 expression. We showed that CD36 directly interacts with FABP4 to regulate fatty acid import, transport, and metabolism. CD36 and FABP4 inhibition induces apoptosis in tumour cells. These results indicate that CD36 mediates fatty acid import from adipocytes into cancer cells and activates signalling pathways that drive tumour progression. Targeting CD36 may have a potential for therapy, which will target the tumour microenvironment.


2019 ◽  
Vol 2 (3) ◽  
pp. e201900304 ◽  
Author(s):  
Ulrich Blache ◽  
Edward R Horton ◽  
Tian Xia ◽  
Erwin M Schoof ◽  
Lene H Blicher ◽  
...  

Mesenchymal stromal cells (MSCs) are key contributors of the tumour microenvironment and are known to promote cancer progression through reciprocal communication with cancer cells, but how they become activated is not fully understood. Here, we investigate how breast cancer cells from different stages of the metastatic cascade convert MSCs into tumour-associated MSCs (TA-MSCs) using unbiased, global approaches. Using mass spectrometry, we compared the secretomes of MCF-7 cells, invasive MDA-MB-231 cells, and sublines isolated from bone, lung, and brain metastases and identified ECM and exosome components associated with invasion and organ-specific metastasis. Next, we used synthetic hydrogels to investigate how these different secretomes activate MSCs in bioengineered 3D microenvironments. Using kinase activity profiling and RNA sequencing, we found that only MDA-MB-231 breast cancer secretomes convert MSCs into TA-MSCs, resulting in an immunomodulatory phenotype that was particularly prominent in response to bone-tropic cancer cells. We have investigated paracrine signalling from breast cancer cells to TA-MSCs in 3D, which may highlight new potential targets for anticancer therapy approaches aimed at targeting tumour stroma.


Cancers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 211 ◽  
Author(s):  
Wei Wang ◽  
Muthu K. Shanmugam ◽  
Ping Xiang ◽  
Ting Yu Amelia Yam ◽  
Vineet Kumar ◽  
...  

Ototoxicity is a major adverse effect of platinum-based chemotherapeutics and currently, there remains a lack of United States Food and Drug Administration-approved therapies to prevent or treat this problem. In our study, we examined the role of the sphingosine 1-phosphate receptor 2 (S1P2) in attenuating cisplatin-induced ototoxicity in several different animal models and cell lines. We found that ototoxicity in S1P2 knockout mice is dependent on reactive oxygen species (ROS) production and that S1P2 receptor activation with a specific agonist, CYM-5478, significantly attenuates cisplatin-induced defects, including hair cell degeneration in zebrafish and prolonged auditory brainstem response latency in rats. We also evaluated the cytoprotective effect of CYM-5478 across different cell lines and showed that CYM-5478 protects neural-derived cell lines but not breast cancer cells against cisplatin toxicity. We show that this selective protection of CYM-5478 is due to its differential effects on key regulators of apoptosis between neural cells and breast cancer cells. Overall, our study suggests that targeting the S1P2 receptor represents a promising therapeutic approach for the treatment of cisplatin-induced ototoxicity in cancer patients.


2020 ◽  
Author(s):  
Ödül Karayazi Atici ◽  
Carrie S. Shemanko

ABSTRACTThere are conflicting reports of the role of prolactin in breast cancer, and its role within the context of the tumour microenvironment is not well understood. In our previous study, we demonstrated a cross-talk between the ataxia telangiectasia-mutated (ATM) DNA damage response pathway and the PRL-Janus-kinase-2 (JAK2)-signal transducer and activator of transcription-5 (STAT5)-heat shock protein-90 (HSP90) pathway. In order to investigate the role of PRL in tumour initiation and the effect of DNA damage in vivo, we used a model of breast cancer initiation that assesses the ability of breast cancer cells to initiate orthotopic xenograft tumour formation after DNA damage. Breast cancer cells engineered to secrete human PRL or the control cells, were treated with the DNA damaging agent doxorubicin or vehicle and injected into mammary fat pad of immune deficient SCID mice. PRL secretion from human breast cancer cells did not change the tumour latency compared to controls, although combined doxorubicin and PRL treatment increased tumour latency. Injection of a natural killer (NK) cell-depleting antibody, anti-asialo GM1, resulted in faster tumour formation only in the PRL-secreting breast cancer cells that were pre-treated with doxorubicin, and not PRL-only or empty vector controls. These results may shed light on the conflicting reports of PRL in breast cancer, and demonstrate that at least within the context of breast cancer cell DNA damage, that PRL exposure in the tumour microenvironment does not delay tumour initiation, but PRL together with DNA damage of breast cancer cells results in reduced tumour volume over time due to asialo-GM1-positive immune cells.


2021 ◽  
Author(s):  
Didem Turgut Cosan ◽  
Ahu SOYOCAK ◽  
İbrahim Uğur ÇALIŞ

Abstract Molecular receptor signaling mechanisms play an important role in many pathophysiological processes, including breast cancer. The spread of cancer from peripheral tissue to distant organs by metastasis is the cause of death of most breast cancer patients. For that reason, the most important step in the treatment of cancer is to prevent metastasis. Sphingosine-1-phosphate receptors and potassium channels play role of cancer cell migration, invasion and they may interact with each other in the progression of cancer. In this study, it was aimed to determine the effects of combined silencing of receptors and channels on the invasion and migration of MCF-7 and MDA-MB-231 breast cancer cells and their interactions on cells. We examined the expression levels of S1P1, S1P3, Kv1.3, and Kv10.1 in MCF-7 and MDA-MB-231 breast cancer cell lines by qRT-PCR. The effects of migration and invasion of breast cancer cells were determined through invasian and wound healing assays. It was observed that high invasion and lateral motility in cells decreased with the combined silencing of S1P1, S1P3, Kv1.3 and Kv10.1 in both cell types. It has been determined that silencing the receptors and channels together is more effective than silencing individually. Our data demonstrated the roles of S1P receptors and potassium channels were associated with invasion and migration signaling pathway. Therefore, these are might be possible therapeutic target for breast cancer metastasis.


Sign in / Sign up

Export Citation Format

Share Document