scholarly journals The Analysis of the Characteristic Development of Material Chemistry Specialty under the Background of "Big Materials"

2019 ◽  
Vol 3 (3) ◽  
pp. 172
Author(s):  
Zegong Zhang

<p>With the rapid development of science and technology, the material discipline also developed rapidly, and gradually developed a lot of new materials. With the emergence of new materials, there are many specialties such as nanometer materials and technology, functional materials, new energy materials and devices. The material chemistry major is a kind of material and chemistry cross traditional major. The teaching purpose of material chemistry major is to improve students' knowledge and skills in material chemistry, so that they can carry out scientific research, teaching, development and other management work in engineering, material science and other related industries, and become an innovative talent in the field of material science. At present, in the environment of rapid development of large materials, the most prominent problem of material chemistry major is how to highlight the specialty characteristics as much as possible in this environment, so as to realize the construction and development of specialty characteristics.</p>

2013 ◽  
Vol 468 ◽  
pp. 167-170
Author(s):  
Yong Mei Tao ◽  
Yu Hong

Manufacturing engineering refers to design the production process for a product including all considerations pertaining to the process of production. Along with the rapid development of global economic integration, manufacturing enterprises in our country are under increasing pressure. In today's ever-changing competitive environment, taking initiative innovation is an important way to improve competitiveness of manufacturing enterprises. Staff's innovation behavior is the most important factor in an organization in innovation. Data from samples of 715 subjects were analyzed through the software of SPSS16.0 and AMOS17.0. The samples are from different regions and industry in our country. It reveals the generation mechanism of individual innovation behavior (IIB) such as to develop new materials and new energy in manufacturing enterprises. In a favorable organizational innovation climate, it is effective to improve innovation management by encouraging affective commitment (AC) of staff.


2016 ◽  
Vol 847 ◽  
pp. 299-307
Author(s):  
Bin Guo ◽  
Bo Zhang ◽  
Qin Cong ◽  
Lu Wei Ma ◽  
Xiao Chun He ◽  
...  

Low-dimensional heterostructured functional materials have been widely applied in new energy materials, catalysts, et al. However, to enhance photo-response in visible light and the biocompatibility improvement are still the great challenges faced. And the dendrimers act good roles in transferring the drug and gene, and has good biocompatibility. Self-assembly on the surface of low-dimensional heterostructured functional materials with dendrimers holding-COOH groups was carried out in this paper. The characterizations of the materials were examined by SEM (scanning electron microscopy), XRD (X-ray diffraction), the Fourier-Transform Infrared (FTIR) spectra, ultraviolet-visible spectroscopy (UV-Vis) and so on. The photoconductivity response to visible light and 808 nm laser with low-power were studied based on interdigital electrodes of Au on flexible PET (polyethylene terephthalate) film substrate. The results indicated that ZnO/CuS modified with dendrimers showed good photo-response to visible light and 808 nm laser, the photo-response properties enhanced greatly by adding some small amount of grapheme oxide. Photocatalytic efficiency was examined by selecting typical organic pollutants, some good results were obtained. The external stimuli driven nanorobots for removal the organic pollutants or toxins in the living body have been developed.


2017 ◽  
Vol 70 (2) ◽  
pp. 126 ◽  
Author(s):  
Mark P. Del Borgo ◽  
Ketav Kulkarni ◽  
Marie-Isabel Aguilar

The unique structures formed by β-amino acid oligomers, or β-peptide foldamers, have been studied for almost two decades, which has led to the discovery of several distinctive structures and bioactive molecules. Recently, this area of research has expanded from conventional peptide drug design to the formation of assemblies and nanomaterials by peptide self-assembly. The unique structures formed by β-peptides give rise to a set of new materials with altered properties that differ from conventional peptide-based materials; such new materials may be useful in several bio- and nanomaterial applications.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1125
Author(s):  
Raluca Nicu ◽  
Florin Ciolacu ◽  
Diana E. Ciolacu

Nanocelluloses (NCs), with their remarkable characteristics, have proven to be one of the most promising “green” materials of our times and have received special attention from researchers in nanomaterials. A diversity of new functional materials with a wide range of biomedical applications has been designed based on the most desirable properties of NCs, such as biocompatibility, biodegradability, and their special physicochemical properties. In this context and under the pressure of rapid development of this field, it is imperative to synthesize the successes and the new requirements in a comprehensive review. The first part of this work provides a brief review of the characteristics of the NCs (cellulose nanocrystals—CNC, cellulose nanofibrils—CNF, and bacterial nanocellulose—BNC), as well as of the main functional materials based on NCs (hydrogels, nanogels, and nanocomposites). The second part presents an extensive review of research over the past five years on promising pharmaceutical and medical applications of nanocellulose-based materials, which have been discussed in three important areas: drug-delivery systems, materials for wound-healing applications, as well as tissue engineering. Finally, an in-depth assessment of the in vitro and in vivo cytotoxicity of NCs-based materials, as well as the challenges related to their biodegradability, is performed.


2017 ◽  
Vol 755 ◽  
pp. 286-291 ◽  
Author(s):  
Dávid Ágoston Balázs ◽  
Zoltán Nyikes ◽  
Tünde Kovács

Building protection on our century is very important because of the terrorist attacks. The old buildings in Europe aren’t enough strong again blast loads. Nowadays we know many different explosives and theirs effects of walls and human bodies. The detonation caused blast effect provokes building damage and fragmentation effects. The explosion caused damages, parts of bricks and fragments produce other secondary damage in other buildings and human bodies.It can’t protect the historical and old buildings by new walls and fences because of the cityscape. It needs to find new possibilities to improve the buildings resistance again blast effects. It needs a effectively thin and strong materials to reinforced the buildings walls. The new materials innovated by material science can be good solution for this project. These materials usually composites likes syntactic foams, spherical shells or carbon fields reinforced composites.


2014 ◽  
Vol 694 ◽  
pp. 163-168
Author(s):  
Liang Guo ◽  
Yun Liang ◽  
Xu Zhang ◽  
Xiao Tian Yang

With the rapid development of world economy, the energy crisis has become one of the urgent problems to be solved. Photovoltaic technology is a green new energy industry, no pollution is widely used all over the world. Typically, for photovoltaic component installation, only considering the utilization of components support cost and area, and the arrangement of components have not given enough attention. Photovoltaic module in use process will inevitably encounter the shadow, the shadow changes to make appropriate adjustments to the PV module arrangement can enhance the power generation capacity. Effect of the shadow on the photovoltaic system performance can be effectively used for photovoltaic component to bring help, is of positive significance. This study analyzed the villa model typical, and the rectangular shadow is modeling, in order to analyze the influence on the photovoltaic component. Through the conclusion of this study can determine the horizontal and vertical components of photovoltaic components which caused little damage, and provide a reference for future research of shadow and photovoltaic system performance.


2020 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Qian Yang

<p>With the rapid development of social economy, the demand for new energy is also increasing, and then the problem of large consumption also has a negative impact on the development of the construction industry. Under the concept of green building, the design and construction units pay more attention to energy conservation and environmental protection, so they actively use photovoltaic new energy in the field of electrical energy conservation of construction projects, so as to improve people's quality of life. Starting from the principles and characteristics of building electrical energy conservation, this paper discusses the methods of building electrical energy conservation, and analyzes how to use photovoltaic new energy in the field of building electrical energy conservation, hoping to better practice the concept of energy conservation.</p>


2021 ◽  
Vol 5 (1) ◽  
pp. 1-5
Author(s):  
Editorial team

Eurasian Journal of Physics and Functional Materials is an international journal published 4 numbers per year starting from October 2017. The aim of the journal is rapid publication of original articles and rewiews in the following areas: nuclear physics, high energy physics, radiation ecology, alternative energy (nuclear and hydrogen, photovoltaic, new energy sources, energy efficiency and energy saving, the energy sector impact on the environment), functional materials and related problems of high technologies.


2020 ◽  
Author(s):  
Jiaxing Qu ◽  
Vladan Stevanovic ◽  
Elif Ertekin ◽  
Prashun Gorai

Doping remains a bottleneck in discovering novel functional materials for applications such as thermoelectrics (TE) and photovoltaics. The current computational approach to materials discovery is to identify candidates by predicting the functional properties of a pool of known materials, and hope that the candidates can be appropriately doped. What if we could "design" new materials that have the desired functionalities and doping properties? In this work, we use an approach, wherein we perform chemical replacements in a prototype structure, to realize doping by design. We hypothesize that the doping characteristics and functional performance of the prototype structure are translated to the new compounds created by chemical replacements. Discovery of new <i>n</i>-type Zintl phases is desirable for TE; however, <i>n</i>-type Zintl phases are a rarity. We demonstrate our doping design strategy by discovering 7 new, previously-unreported ABX<sub>4</sub> Zintl phases that adopt the prototypical KGaSb<sub>4</sub> structure. Among the new phases, we computationally confirm that NaAlSb<sub>4</sub>, NaGaSb<sub>4</sub> and CsInSb<sub>4</sub> are <i>n</i>-type dopable and potentially exhibit high <i>n</i>-type TE performance, even exceeding that of KGaSb<sub>4</sub>. Our structure prototyping approach offers a promising route to discover new materials with designed doping and functional properties.


Sign in / Sign up

Export Citation Format

Share Document