scholarly journals MetaRE: search for cis-regulatory elements via meta-analysis of transcriptomic data

2018 ◽  
pp. 179-179 ◽  
2020 ◽  
Author(s):  
Katherina C. Chua ◽  
Chenling Xiong ◽  
Carol Ho ◽  
Taisei Mushiroda ◽  
Chen Jiang ◽  
...  

AbstractMicrotubule targeting agents (MTAs) are anticancer therapies commonly prescribed for breast cancer and other solid tumors. Sensory peripheral neuropathy (PN) is the major dose-limiting toxicity for MTAs and can limit clinical efficacy. The current pharmacogenomic study aimed to identify genetic variations that explain patient susceptibility and drive mechanisms underlying development of MTA-induced PN. A meta-analysis of genome-wide association studies (GWAS) from two clinical cohorts treated with MTAs (CALGB 40502 and CALGB 40101) was conducted using a Cox regression model with cumulative dose to first instance of grade 2 or higher PN. Summary statistics from a GWAS of European subjects (n = 469) in CALGB 40502 that estimated cause-specific risk of PN were meta-analyzed with those from a previously published GWAS of European ancestry (n = 855) from CALGB 40101 that estimated the risk of PN. Novel single nucleotide polymorphisms in an enhancer region downstream of sphingosine-1-phosphate receptor 1 (S1PR1 encoding S1PR1; e.g., rs74497159, βCALGB40101 per allele log hazard ratio (95% CI) = 0.591 (0.254 - 0.928), βCALGB40502 per allele log hazard ratio (95% CI) = 0.693 (0.334 - 1.053); PMETA = 3.62×10−7) were the most highly ranked associations based on P-values with risk of developing grade 2 and higher PN. In silico functional analysis identified multiple regulatory elements and potential enhancer activity for S1PR1 within this genomic region. Inhibition of S1PR1 function in iPSC-derived human sensory neurons shows partial protection against paclitaxel-induced neurite damage. These pharmacogenetic findings further support ongoing clinical evaluations to target S1PR1 as a therapeutic strategy for prevention and/or treatment of MTA-induced neuropathy.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009317
Author(s):  
Ilario De Toma ◽  
Cesar Sierra ◽  
Mara Dierssen

Trisomy of human chromosome 21 (HSA21) causes Down syndrome (DS). The trisomy does not simply result in the upregulation of HSA21--encoded genes but also leads to a genome-wide transcriptomic deregulation, which affect differently each tissue and cell type as a result of epigenetic mechanisms and protein-protein interactions. We performed a meta-analysis integrating the differential expression (DE) analyses of all publicly available transcriptomic datasets, both in human and mouse, comparing trisomic and euploid transcriptomes from different sources. We integrated all these data in a “DS network”. We found that genome wide deregulation as a consequence of trisomy 21 is not arbitrary, but involves deregulation of specific molecular cascades in which both HSA21 genes and HSA21 interactors are more consistently deregulated compared to other genes. In fact, gene deregulation happens in “clusters”, so that groups from 2 to 13 genes are found consistently deregulated. Most of these events of “co-deregulation” involve genes belonging to the same GO category, and genes associated with the same disease class. The most consistent changes are enriched in interferon related categories and neutrophil activation, reinforcing the concept that DS is an inflammatory disease. Our results also suggest that the impact of the trisomy might diverge in each tissue due to the different gene set deregulation, even though the triplicated genes are the same. Our original method to integrate transcriptomic data confirmed not only the importance of known genes, such as SOD1, but also detected new ones that could be extremely useful for generating or confirming hypotheses and supporting new putative therapeutic candidates. We created “metaDEA” an R package that uses our method to integrate every kind of transcriptomic data and therefore could be used with other complex disorders, such as cancer. We also created a user-friendly web application to query Ensembl gene IDs and retrieve all the information of their differential expression across the datasets.


Science ◽  
2020 ◽  
Vol 367 (6484) ◽  
pp. eaay6690 ◽  
Author(s):  
Katrina L. Grasby ◽  
Neda Jahanshad ◽  
Jodie N. Painter ◽  
Lucía Colodro-Conde ◽  
Janita Bralten ◽  
...  

The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson’s disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.


2017 ◽  
Vol 15 ◽  
pp. 425-432 ◽  
Author(s):  
Pía Francesca Loren Reyes ◽  
Tom Michoel ◽  
Anagha Joshi ◽  
Guillaume Devailly

2018 ◽  
Author(s):  
Katrina L. Grasby ◽  
Neda Jahanshad ◽  
Jodie N. Painter ◽  
Lucía Colodro-Conde ◽  
Janita Bralten ◽  
...  

The cerebral cortex underlies our complex cognitive capabilities, yet we know little about the specific genetic loci influencing human cortical structure. To identify genetic variants, including structural variants, impacting cortical structure, we conducted a genome-wide association meta-analysis of brain MRI data from 51,662 individuals. We analysed the surface area and average thickness of the whole cortex and 34 regions with known functional specialisations. We identified 255 nominally significant loci (P≤ 5 × 10−8); 199 survived multiple testing correction (P≤ 8.3 × 10−10; 187 surface area; 12 thickness). We found significant enrichment for loci influencing total surface area within regulatory elements active during prenatal cortical development, supporting the radial unit hypothesis. Loci impacting regional surface area cluster near genes in Wnt signalling pathways, known to influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson’s disease, insomnia, depression and ADHD.One Sentence SummaryCommon genetic variation is associated with inter-individual variation in the structure of the human cortex, both globally and within specific regions, and is shared with genetic risk factors for some neuropsychiatric disorders.


2019 ◽  
Vol 25 (18) ◽  
pp. 5717-5726 ◽  
Author(s):  
Alexios Matikas ◽  
Ioannis Zerdes ◽  
John Lövrot ◽  
François Richard ◽  
Christos Sotiriou ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Antonela Sofía Asad ◽  
Alejandro Javier Nicola Candia ◽  
Nazareno Gonzalez ◽  
Camila Florencia Zuccato ◽  
Araceli Abt ◽  
...  

AbstractAlthough prolactin (PRL) and its receptor (PRLR) have been detected in glioblastoma multiforme (GBM), their role in its pathogenesis remains unclear. Our aim was to explore their contribution in GBM pathogenesis. We detected PRL and PRLR in all GBM cell lines tested. PRLR activation or overexpression using plasmid transfection increased proliferation, viability, clonogenicity, chemoresistance and matrix metalloproteinase activity in GBM cells, while PRLR antagonist ∆1–9-G129R-hPRL reduced their proliferation, viability, chemoresistance and migration. Meta-analysis of transcriptomic data indicated that PRLR was expressed in all grade II-III glioma (GII-III) and GBM samples. PRL was upregulated in GBM biopsies when compared to GII-III. While in the general population tumour PRL/PRLR expression did not correlate with patient survival, biological sex-stratified analyses revealed that male patients with PRL+/PRLRHIGH GBM performed worse than PRL+/PRLRLOW GBM. In contrast, all male PRL+/PRLRHIGH GII-III patients were alive whereas only 30% of PRL+/PRLRLOW GII-III patients survived after 100 months. Our study suggests that PRLR may be involved in GBM pathogenesis and could constitute a therapeutic target for its treatment. Our findings also support the notion that sexual dimorphism should be taken into account to improve the care of GBM patients.


Author(s):  
Daria Novikova ◽  
Yana Sizentsova ◽  
Pavel Cherenkov ◽  
Victoria Mironova

At the molecular level, response to an external factor or an internal condition causes reprogramming of temporal and spatial transcription. When an organism undergoes physiological and/or morphological changes, several signaling pathways are activated simultaneously. Examples of such complex reactions are the response to temperature changes, dehydration, various biologically active substances, and others. Synergistic action of multiple pathways greatly complicates the experimental study of the molecular genetic mechanisms of the organism's reactions. As a result, a significant part of the regulatory ensemble in such complex reactions remains unidentified. We developed metaRE, an R package for the systematic search for cis-regulatory elements enriched in the promoters of the genes significantly changed their transcription in a complex reaction. metaRE mines multiple expression profiling datasets generated to test the same organism's response and identifies simple and composite cis-regulatory elements systematically associated with differential expression of genes. Here we showed metaRE performance for identification of cold stress-responsive cis-regulatory code in Arabidopsis thaliana. MetaRE identified potential binding sites for known as well as unknown cold response regulators. Software with source files, documentation, and example data files are freely available online at the repository (https://github.com/cheburechko/MetaRE).


Sign in / Sign up

Export Citation Format

Share Document