scholarly journals The Fermentation Methods for Production of Injera and Dabo in Ethiopia: A Review

2021 ◽  
Author(s):  
Gurmesa Tesema Keyeta

Fermented food and beverage products are made globally using different practices of fresh materials with microbes. Fermented foods have sample sources of essential vitamins, minerals, enzymes and antioxidants that are all enhanced through the process of fermentation. The advantageous effects related with fermented products have a special prominence during the production of these products in less industrialized countries like Ethiopia. In the country, fermented food and beverage products have practiced in a long history. During the production of traditional fermented food natural fermentation process with the absence of starter cultures are used to initiate the fermentation process Ethiopia. The use of yeast is also common with the popularization of modern baking and pastry in the country. Moreover, the preparation of much traditionally fermented food is still practiced in a household art even though there are electric ovens and other accessories have been introduced in the restaurants and business centers. The bread can be prepared from various cereals but for Injera tef [Eragrostis tef (Zucc.) Trotter] is the most preferred ingredient. The traditional bread locally called hamasha has also been prepared with various modified ingredients and fermentation techniques.

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Bikila Wedajo Lemi

Globally, fermented beverage and condiments are made by using different conventional practices, raw materials, and microorganisms. This paper presents the available literature review on the technology and microbiology of traditional Ethiopian beverages and condiment products. Traditional fermented beverage and condiment products have essential vitamins, minerals, enzymes, and antioxidants that are all enhanced through the process of traditional fermentation practices. In Ethiopia, fermented beverage and condiment products have practiced in a long history. During the production of traditional fermented beverage and condiment products, controlled natural fermentation process with the absence of starter cultures are used to initiate it. Moreover, the preparation of many traditionally fermented beverage and condiment products is still practiced in a household art, thereby a wide variety of fermented beverages and condiments are consumed in Ethiopia. In conclusion, the review discusses the nature of the beverage and condiment preparation, poor traditional household processing, and the extent and limitation of scientific work done so far and suggests some recommendations to limit the problem in Ethiopia.


2019 ◽  
Author(s):  
Shilei Wang ◽  
Qun Wu ◽  
Yao Nie ◽  
Yan Xu

ABSTRACTNatural microbiota plays an essential role in flavor compounds producing for traditional food fermentation. Whereas, the fluctuation of natural microbiota results in the inconstancy of food quality. Thus, it is critical to reveal the core microbiota for flavor compounds producing and construct a synthetic core microbiota for constant food fermentation. Here, we revealed the core microbiota based on their flavor-producing and co-occurrence performance, using Chinese light aroma type liquor as a model system. Five genera were identified to be the core microbiota, including Lactobacillus, Saccharomyces, Pichia, Geotrichum, and Candida. The synthetic core microbiota of these five genera presented a reproducible dynamic profile with that in the natural microbiota. Monte Carlo test showed that the interpretation of five environmental factors (lactic acid, ethanol and acetic acid contents, moisture and pH) on the synthetic microbiota distribution were highly significant (P < 0.01), which was similar with that in the natural fermentation system. In addition, 77.27% of the flavor compounds produced by the synthetic core microbiota showed a similar dynamic profile (ρ > 0) with that in the natural liquor fermentation process, and the flavor profile presented a similar composition. It indicated that the synthetic core microbiota is efficient for reproducible flavor metabolism. This work established a method for identifying core microbiota and constructing a synthetic microbiota for reproducible flavor compounds. It is of great significance for the tractable and constant production of various fermented foods.IMPORTANCEThe transformation from natural fermentation to synthetic fermentation is essential to construct a constant food fermentation process, which is the premise for stably making high-quality food. According to the functions of flavor-producing and co-occurring in dominant microbes, we provided a system-level approach to identify the core microbiota in Chinese light aroma type liquor fermentation. In addition, we successfully constructed a synthetic core microbiota to simulate the microbial community succession and flavor compounds production in the in vitro system. The constructed synthetic core microbiota could not only facilitate a mechanistic understanding of the structure and function of the microbiota, but also be beneficial for constructing a tractable and reproducible food fermentation process.


2018 ◽  
Vol 11 (1) ◽  
pp. 2170-2179
Author(s):  
Chitta Ranjan Deb ◽  
Bendangnaro Jamir

Soybean based fermented foods are known to be highly nutritive, not just because it contains high protein content but also due to presence of polyphenols. Various microorganisms involved during the fermentation process have proven to play active role in the enhancement of the nutritional value as well as increase in phytochemicals in the product. Akhuni/Axone is a popular soybean product of Nagaland, India. It forms an integral part of the diet and is used as a condiment during preparation of various dishes in the Naga kitchen.  This study describes the nutritional value, the antioxidant activity and the presence of polyphenols of Akhuni/Axone, which increase significantly in composition between the soybean seeds and the fermented product. The molecular identification of the microorganisms present in Akhuni/Axone product is also reported in this paper.


2010 ◽  
Author(s):  
◽  
Vinodh Aroon Edward

Cassava, (Manihot esculenta Crantz), is used for the production of a variety of West African foods and ranks fourth in the list of major crops in developing countries after rice, wheat and maize. Gari is one of the most popular foods produced from cassava. Cassava may contain high levels of linamarin, a cyanogenic glucoside, which in its natural state is toxic to man. Therefore, some processing methods that can enhance the detoxification of cassava and lead to the improvement of the quality and hygienic safety of the food are vitally important for less toxic products to be obtained. Quality, safety and acceptability of traditional fermented foods may be improved through the use of starter cultures. There has been a trend recently to isolate wild-type strains from traditional products for use as starter cultures in food fermentation. A total of 74 bacterial strains and 21 yeast strains were isolated from a cassava mash fermentation process in a rural village in Benin, West Africa. These strains were assessed, together with 26 strains isolated at the CSIR from cassava samples sent from Benin previously, for phenotypic and technological properties. Twenty four presumptive lactic acid bacteria (LAB) were selected for further phenotypic, genotypic and technological characterization during a research visit to the BFE (now Max Rubner Institute of Nutrition and Food). After assessment, the strains VE 20, VE 36, VE 65b, VE 77 and VE 82 were chosen for further study as starter cultures. These L. plantarum strains were chosen on the basis of predominance and possession of suitable technological properties. The investigation of this study was complemented by further, similar studies on further Gari isolates in Germany by the BFE. That study was done independently from this study, but both studies served to select potential starter cultures for cassava fermentation for the production of Gari, as this was the common goal of the project. Thus, a wider final selection of potential starter cultures was decided on at the project level and this selection was further tested in fermentation experiments. A total of 17 strains were grown in optimized media in 2 L fermenters. These strains were freeze-dried and thereafter tested in lab-scale cassava mash fermentation trials. xiii The strains performed well in the small scale bucket fermentations. There was a rapid acidification evidenced by the increase in titratable acidity, ranging from 1.1 to 1.3 % at 24 hours, and 1.3 to 1.6 % at 48 hours. The effect of the starter was obvious in that it lowered the pH much faster and to lower levels than the control. It appeared that both the processing and starter culture addition played a role in the removal of cyanide during processing of the cassava into Gari. This was evident from the lower cyanide values obtained for fermentations that included starter cultures. The study also showed that especially the L. plantarum group strains could be produced as starter cultures at lower costs than compared to L. fermentum, W. paramesenteroides or L. mesenteroides strains. Overall the results of this study were crucial for the project in showing that a starter culture which is easy and economical to produce and which has the desired attributes is a feasible possibility for application in the field.


Author(s):  
Radka Burdychová ◽  
V. Dohnal

The contemporary trend is using probiotic cultures in fermented food production. They can be used as starter cultures and for their positive effect on human health. Probiotics are defined as living microorganisms present in food which consumed in adequate amounts affects positively the intestinal microflora’s composition and balance and thus human health itself. Cultures of these bacteria have to be of human origin and be able to survive the passage through the gastrointestinal tract. They also have to be able to multiply on the site of action (in intestine) and must not be toxic or pathogenic. Unfortunately, even some probiotic cultures can be counted among potential producers of biogenic amines, so their testing for the presence of biogenic amines is necessary (BURDYCHOVÁ, 2007).The aim of this study was screening of 26 types of bacterial cultures (SACCO, Italy) as probiotic cultures for their ability to produce biogenic amines tyramine and histamine. Cultivation in decarboxy­lating medium (BOVER-CID and HOLZAPFEL, 1999), HPLC descibed by BURDYCHOVÁ and DOHNAL (2007), and PCR detection of genes coding enzymes tyrosindecarboxylase and histidindecarboxylase, participating in formation of biogenic amines (COTON et al., 2004), were used as the screening methods. 19 strains of Lactobacillus spp., 3 strains of Bifidobacterium spp., 2 strains of Pediococcus spp. and 2 strains of Enterococcus spp. were examined by the methods mentioned above. The tyramine production was detected at 8 strains of Lactobacillus spp., 3 strains of Bifidobacterium spp. and 2 strains of Enterococcus spp., whereas no tested cultures were found to be able to produce histamine.The strains at which production of biogenic amines tyramine and histamine wasn’t detected are suitable for fermented food processing. When the strains at which production of tyramine was demonstrated were used in food processing, a control of concentration of this biogenic amine in final product is highly recommended.


2020 ◽  
Vol 74 (5) ◽  
pp. 391-397
Author(s):  
Janine Anderegg ◽  
Florentin Constancias ◽  
Leo Meile

Tyramine is a health-adverse biogenic amine, which can accumulate in fermented foods like cheese by decarboxylation of the free amino acid tyrosine by either starter cultures or resident microbes such as lactic acid bacteria including Enterococcus spp., respectively. Our study aimed to show the effect of sodium chloride concentrations on tyramine production as well as to characterise bacterial strains as anti-tyramine biocontrol agents in a 2 mL micro-cheese fermentation model. The effect of sodium chloride on tyramine production was assayed with tyramine producing strains from eight different species or subspecies. Generally, an increase in sodium chloride concentration enhanced tyramine production, e.g. from 0% to 1.5% of sodium chloride resulted in an increase of tyramine of 870% with a Staphylococcus xylosus strain. In the biocontrol screening among lactic acid bacteria, a Lactobacillus plantarum JA-1199 strain was screened that could consume in successful competition with other resident bacteria tyrosine in the micro-cheese model as a source of energy gain. Thereby tyramine accumulation was reduced between 4% to 99%. The results of this study disclose a feasible strategy for decreasing tyramine concentration and increasing the safety level of fermented food. It is an example of development and application of bacterial isolates as starter or protective cultures in food, a biocontrol topic, which Oreste Ghisalba – in his project evaluation function of SNF and later on CTI – was promoting with great emphasis in our ETH Food Biotechnology research group.


Author(s):  
NE Posokina ◽  
AI Zakharova

Introduction: Fermentation is a biotechnological process of preserving the biological potential of raw materials and transforming them in order to impart new organoleptic properties and to increase nutritional value of the product allowing diversification of daily meals; thus, in some countries fermented products make up a significant part of the human diet. Despite the fact that fermented products are very useful for humans, the fermentation process itself remained rather complicated for reproduction during a long time. Currently, starter cultures are used in industrial production of fermented food products enabling the production of foodstuffs with a guaranteed range of consumer properties. Such species of lactic acid bacteria as Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus, and Weissella play the main role in production of fermented food and drinks while L. mesenteroides plays the primary role in starting fermentation of many types of plant materials including cabbage, beet, turnip, cauliflower, green beans, chopped green tomatoes, cucumbers, olives, etc. Objective: To control and manage the industrial fermentation process, it is important to determine the main processes occurring at different stages and the types of lactic acid microorganisms responsible for initiation, continuation and completion of the process. Results: This review shows that, despite the variety of fermentable vegetables, L. mesenteroides species of lactic acid bacteria are of particular importance at the primary heteroenzymatic stage since during this very period the processed raw materials form conditions for inhibiting pathogenic and facultative pathogenic microflora and create optimal environment for subsequent development of targeted microorganisms determining the quality of finished products. Conclusions: When developing food technology, L. mesenteroides species of lactic acid bacteria must be an indispensable component of industrial starter cultures for obtaining final products of consistently high quality.6


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Mariana Tristezza ◽  
Lorenagostina Fantastico ◽  
Cosimo Vetrano ◽  
Gianluca Bleve ◽  
Daniela Corallo ◽  
...  

The characterization of autochthonousSaccharomyces cerevisiaestrains is an important step towards the conservation and employment of microbial biodiversity. The utilization of selected autochthonous yeast strains would be a powerful tool to enhance the organoleptic and sensory properties of typical regional wines. In fact, indigenous yeasts are better tailored to a particular must and because of this they are able to praise the peculiarities of the derived wine. The present study described the biodiversity of indigenousS. cerevisiaestrains isolated from natural must fermentations of an ancient and recently rediscovered Apulian grape cultivar, denoted as “Susumaniello.” The yeast strains denoted by the best oenological and technological features were identified and their fermentative performances were tested by either laboratory assay. Five yeast strains showed that they could be excellent candidates for the production of industrial starter cultures, since they dominated the fermentation process and produced wines characterized by peculiar oenological and organoleptic features.


2020 ◽  
Vol 8 (10) ◽  
pp. 1534
Author(s):  
Andrea Comasio ◽  
Simon Van Kerrebroeck ◽  
Henning Harth ◽  
Fabienne Verté ◽  
Luc De Vuyst

Microbial strains for starter culture-initiated sourdough productions are commonly isolated from a fermenting flour–water mixture. Yet, starter culture strains isolated from matrices other than sourdoughs could provide the dough with interesting metabolic properties and hence change the organoleptic properties of the concomitant breads. Furthermore, the selection of sourdough starter cultures does not need to be limited to lactic acid bacteria (LAB), as other food-grade microorganisms are sometimes found in sourdoughs. Therefore, different strains belonging to LAB, acetic acid bacteria (AAB), and coagulase-negative staphylococci (CNS) that originated from different fermented food matrices (fermenting cocoa pulp-bean mass, fermented sausage, and water kefir), were examined as to their prevalence in a wheat sourdough ecosystem during 72-h fermentations. Limosilactobacillus fermentum IMDO 222 (fermented cocoa pulp-bean mass isolate) and Latilactobacillus sakei CTC 494 (fermented sausage isolate) seemed to be promising candidates as sourdough starter culture strains, as were the AAB strains Acetobacter pasteurianus IMDO 386B and Gluconobacter oxydans IMDO A845 (both isolated from fermented cocoa pulp-bean mass), due to their competitiveness in the wheat flour-water mixtures. Wheat breads made with G. oxydans IMDO A845 sourdoughs were significantly darker than reference wheat breads.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Katherine J. Li ◽  
Elske M. Brouwer-Brolsma ◽  
Kathryn J. Burton-Pimentel ◽  
Guy Vergères ◽  
Edith J. M. Feskens

Abstract Background Fermented foods are ubiquitous in human diets and often lauded for their sensory, nutritious, and health-promoting qualities. However, precise associations between the intake of fermented foods and health have not been well-established. This is in part due to the limitations of current dietary assessment tools that rely on subjective reporting, making them prone to memory-related errors and reporting bias. The identification of food intake biomarkers (FIBs) bypasses this challenge by providing an objective measure of intake. Despite numerous studies reporting on FIBs for various types of fermented foods and drinks, unique biomarkers associated with the fermentation process (“fermentation-dependent” biomarkers) have not been well documented. We therefore conducted a comprehensive, systematic review of the literature to identify biomarkers of fermented foods commonly consumed in diets across the world. Results After title, abstract, and full-text screening, extraction of data from 301 articles resulted in an extensive list of compounds that were detected in human biofluids following the consumption of various fermented foods, with the majority of articles focusing on coffee (69), wine (69 articles), cocoa (62), beer (34), and bread (29). The identified compounds from all included papers were consolidated and sorted into FIBs proposed for a specific food, for a food group, or for the fermentation process. Alongside food-specific markers (e.g., trigonelline for coffee), and food-group markers (e.g., pentadecanoic acid for dairy intake), several fermentation-dependent markers were revealed. These comprised compounds related to the fermentation process of a particular food, such as mannitol (wine), 2-ethylmalate (beer), methionine (sourdough bread, cheese), theabrownins (tea), and gallic acid (tea, wine), while others were indicative of more general fermentation processes (e.g., ethanol from alcoholic fermentation, 3-phenyllactic acid from lactic fermentation). Conclusions Fermented foods comprise a heterogeneous group of foods. While many of the candidate FIBs identified were found to be non-specific, greater specificity may be observed when considering a combination of compounds identified for individual fermented foods, food groups, and from fermentation processes. Future studies that focus on how fermentation impacts the composition and nutritional quality of food substrates could help to identify novel biomarkers of fermented food intake.


Sign in / Sign up

Export Citation Format

Share Document