Weed management in onion: A review

Author(s):  
M. Dhananivetha ◽  
M. Mohammed Amnullah ◽  
P. Murali Arthanari ◽  
S. Mariappan

The bulbous vegetable onion Allium cepa Var. aggregatum L. (2n=16) is the most important species of Allium group and is regarded as the single most important vegetable spices as it forms an indispensable part of many diets, both vegetarian and non-vegetarian. Onion is valued for its bulbs having characteristic odour, flavor and pungency. Onion is regarded as a highly export oriented crop and earns a valuable foreign exchange for the country. Weeds are of great menace as they interfere with production of crop and add to the cost of cultivation. The reduction in crop yield has direct correlation with weed competition. Onion exhibits greater susceptibility to weed competition as compared to other crops due to its inherent characteristics such as their slow growth, small stature, shallow roots and lack of dense foliage. The effective weed control involves identification of weed flora, method of weed control and judicious combination of effective weed control methods. Hand weeding in onion is a common practice in India, but it is a tedious, expensive and time consuming task due to closer spacing and shallow root system. Non-availability of labourers during critical period of crop makes hand weeding difficult leading to heavy yield losses. Spraying of pre-emergence herbicides keeps the crop in weed free conditions during the early stages. At later stage, second flush of weeds will affect the bulb formation. Hand weeding helps to keep the weed population below economic threshold level throughout the crop growth period. Pre-emergence combined with hand weeding may be costly because of the reduced labour availability and higher labour cost. After bulb formation manual or mechanical methods of weed control will damage the bulb. Application of early post emergence may be helpful to reduce damage to the bulb, weed competition and cost of weeding. Hence a brief review was presented to find out the effect of different weed management method in onion.

2021 ◽  
Vol 1 (1) ◽  
pp. 46-51
Author(s):  
A. Duwadi ◽  
A. Acharya ◽  
S. Gautam

Weed is omnipresent species that compete with major crops for light, nutrients, space, and water for their growth and development and ultimately deteriorate the ideal environment for crops growth. In the present context, herbicide application is the easiest and seemingly economical approach for weed control in south-Asian countries. In contrary, the side effects of herbicide on health and environment impose to adopt for the non-chemical method of weed management. This paper reviewed the menace of herbicide, crop weed association, the critical period of crop-weed competition, and different methods of organic weed control implemented especially for maize. The main objective of this review is to maneuver a weed control strategy for maize other than the chemical application. The findings of different research suggested that a critical period of crop-weed competition in maize lies between 2 to 8 weeks after crop sowing. Many mechanical methods for weed control in maize proved efficient but seemed labour intensive and biological methods provided maximum security against specific weed species. The cultural method in combination with other methods effectively reduced the weed population in the maize field. It was found that, if various components of non-chemical weed management are implemented systematically, we can control the weed population with higher economic return and achieve the goal of organic food production with sustainable solutions. Weed control in the organic system focuses on management techniques designed to prevent weed emergence, give a competitive advantage to the main crop, and act for sustainable solutions. The non-chemical integrated weed management system is recommended to reduce the use of herbicide and for sustainable production. A review of non-chemical weed management in maize could be helpful for researchers to provide useful, sustainable, and environmentally friendly solutions to farmers to solve the problem of weed infestation in the maize crop along with substantial yield improvement.


2018 ◽  
Vol 35 (2) ◽  
pp. 215-220 ◽  
Author(s):  
Sam E. Wortman ◽  
Frank Forcella ◽  
David Lambe ◽  
Sharon A. Clay ◽  
Daniel Humburg

AbstractWeed competition, especially within the crop row, limits the productivity and profitability of organic crop production. Abrasive weeding, a mechanical alternative to hand weeding, uses air-propelled grits to control small weed seedlings growing within the crop row. Recent research has demonstrated the successful use of abrasive weeding to reduce weed competition and increase yields in organic maize (Zea mays), tomato (Solanum lycopersicum) and green and red pepper crops (Capsicum annuum), but the profitability of this weed control tactic has not been assessed. Our objective was to determine the profitability of abrasive weeding using empirical yield data from three previously published studies, a range of crop prices and revenues, and a range of costs for wages, grit applicator ownership, tractor use, abrasive grits, and fuel. Results suggest that abrasive weeding was not profitable in organic maize production, and may reduce net income by US$223–3537 ha−1 compared with inter-row cultivation alone for weed control. The cost of abrasive weeding in maize was largely dependent on the cost of abrasive grits and the cost to own a four-row grit applicator (US$736–2105 yr−1). However, abrasive weeding was less expensive than hand weeding, especially as the scale of production increased. Abrasive weeding was profitable in tomato and pepper crops and increased net mean income by US$12,251–33,265 ha−1. However, abrasive weeding was not 100% effective and hand weeding for weed-free conditions was always the most profitable approach to in-row weed management in vegetable crops. The profit potential of the hand-weeded, weed-free treatments demonstrates the importance of weed control in high-value specialty crops–even those grown in plastic mulch film. Despite the profit potential for hand weeding observed here, labor is increasingly difficult to source, retain and afford, and abrasive weeding offers a mechanical alternative with 66% less labor required. Further research is needed to improve the efficacy of abrasive weeding and to reduce the cost of abrasive grits and application.


Author(s):  
Sheeja K. Raj ◽  
J. K. Sinchana

Pulses are the important crop after cereals and is the cheapest source of dietary protein. After the Green revolution, the production of pulses in India remain stagnant over the years due to various biotic and abiotic stresses. Among the various biotic stresses, weeds are the major one which causes severe yield loss in pulses. Due to initial slow growth of pulses, weeds emerge first and gain competitive advantage over the crop and exhibit smothering effect on crop. Moreover, major area of pulses (84 per cent) are under rainfed condition and grown in combination with non-legume crop. As a result, pulses are subjected to various types of biotic and abiotic stresses. Weeds besides causing direct loss in yield also hinder farm activities and serve as alternate host to many pests. Weed management in pulses is essential to bring the weeds below the threshold level to maximize the seed yield and quality. The literature regarding the importance of weed management in pulses, weed flora, critical period of crop weed competition and different weed management methods of weed control are collected and presented in this paper.Weeds are the predominant biological constraint in pulse production due to the slow initial growth of the crop. Strategies’ of weed management depends on the weed competition, types of weeds present and weed control method adopted. In general, critical period of weed competition for short duration pulses is up to 30 days and for long duration pulse crops it is up to 60 days. The major three types of weeds viz., grasses, broad leaved weeds and sedges were found in association with pulses. Intensity of weed infestation varies with agroecological conditions and crop management practices followed. A system approach is necessary to maintain the weed population below the economic threshold level thereby reducing the yield loss. Integrated weed management (IWM) which has been proved to be more effective than any single method in alleviating the buildup of weeds in pulse crop.


1970 ◽  
Vol 33 (4) ◽  
pp. 623-629 ◽  
Author(s):  
MSA Khan ◽  
MA Hossain ◽  
M Nurul Islam ◽  
SN Mahfuza ◽  
MK Uddin

Field experiments were conducted at the research farm of Bangladesh Agricultural Research Institute, Joydebpur during kharif-1 (March to July) seasons of 2005 and 2006 to identify the critical period of crop-weed competition for Indian spinach. Major weed species were Paspalurn commersoni, Echinochlaa crusgalli. Lie nv/nc india. Cyanotis axillaris and Cyperus rotundus. The lowest weed dry matter was 76.3 g m-2 in 2005 and l01.60 g m-2 in 2006 from the plots weeded up to 40 days after transplanting (DAT). The highest yields were obtained (74.82 t ha in 2005 and 48.48 t ha in 2006) from the weed free plots. The fresh yield of Indian spinach did not vary among no weeding upto 20, 30 and 40 DAT in 2006. But weeded plot upto 30 and 40 DAT produced identical yield in 2005. Maximum BCR (4.52) was obtained from weeded plots upto 30 DAT in 2005 but BCR (2.60) was same from weeded upto 30 and 40 DA F in 2006. On an average, highest BCR (3.55) was recorded from weeding upto 30 DAT. Results revealed that the critical period of crop weed competition lies between 20 and 30 DAT and two times hand weeding would be necessary within 30 DAT for maximum benefit. Key Words: Crop-weed competitions, critical period, weed management and Indian spinach. doi: 10.3329/bjar.v33i4.2306 Bangladesh J. Agril. Res. 33(4) : 623-629, December 2008


2017 ◽  
Vol 9 (1) ◽  
pp. 539-543
Author(s):  
Aradhana Bali ◽  
B. R. Bazaya ◽  
Sandeep Rawal

A field experiment was conducted during kharif season of 2011 at Research Farm, Sher-e-Kashmir University of Agricultural Sciences and Technology, Chatha, Jammu to evaluate the effect of weed management prac-tices on yield and nutrient uptake of soybean utilizing different resource management strategies. The lowest weed density and dry matter of weeds was recorded with hand weeding at 15 and 35 days after sowing (DAS) which was equally effective as imazethapyr @ 75 g ha -1 (PoE) fb hoeing at 35 DAS and quizalofop-ethyl @ 40 g ha-1 (PoE) fb hoeing at 35 DAS. All weed control treatments had significant effect on yield and nutrient up-take of soybean. Among the different weed control treatments, lowest N, P and K uptake by weeds were recorded in hand-weeding (15 and 35 DAS) which was statistically at par with imazethapyr @ 75 g ha -1 fb hoeing at 35 DAS. The maximum uptake by seed and straw were recorded in weed free which was statistically at par with twice hand weeding at 15 and 35 DAS, imazethapyr @ 75 g ha-1 fb hoeing at 35 DAS and quizalofop-ethyl @ 40 g ha-1 fb hoeing at 35 DAS. The highest seed and straw yield of soybean was harvested with hand-weeding (15 and 35 DAS) followed by imazethapyr @ 75 g ha -1 fb hoeing at 35 DAS. For the first time, soybean crop has been introduced in Jammu region for research purpose. Weed management varies with agro-climatic conditions. The study would be helpful to understand weed menace in this particular climatic condition of Jammu and to manage them combinedly and efficiently.


Agriculture ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 138 ◽  
Author(s):  
Hilary Sandler

Integrated weed management (IWM) has been part of cranberry cultivation since its inception in the early 19th century. Proper site and cultivar selection, good drainage, rapid vine establishment, and hand weeding are as important now for successful weed management as when the industry first started. In 1940, Extension publications listed eight herbicides (e.g., petroleum-based products, inorganic salts and sulfates) for weed control. Currently, 18 herbicides representing 11 different modes of action are registered for use on cranberries. Nonchemical methods, such as hand weeding, sanding, flooding, and proper fertilization, remain integral for managing weed populations; new tactics such as flame cultivation have been added to the toolbox. Priority ratings have been developed to aid in weed management planning. Despite many efforts, biological control of weeds remains elusive on the commercial scale. Evaluation of new herbicides, unmanned aerial systems (UAS), image analysis, and precision agriculture technology; investigation of other management practices for weeds and their natural enemies; utilization of computational decision making and Big Data; and determination of the impact of climate change are research areas whose results will translate into new use recommendations for the weed control of cranberry.


2016 ◽  
Vol 34 (1) ◽  
pp. 57-64 ◽  
Author(s):  
S. MUHAMMAD ◽  
I. MUHAMMAD ◽  
A. SAJID ◽  
L. MUHAMMAD ◽  
A. MAQSHOOF ◽  
...  

Weed management is a primary concern in direct seeded rice (DSR) cropping because weed growth becomes a major constraint on crop yield. A two year field study was set up to evaluate the effect of various weed control measures on crop growth, grain yield and grain quality of DSR. The experiment involved five different weed control measures: hand weeding, hoeing, inter-row tine cultivation, inter-row spike hoeing and herbicide treatment (Nominee 100 SC). The extent of weed control (compared to a non-weeded control) ranged from 50-95%. The highest crop yield was obtained using hand weeding. Hand weeding, tine cultivation and herbicide treatment raised the number of fertile rice tillers formed per unit area and the thousand grain weight. Tine cultivation provided an effective and economical level of weed control in the DSR crop.


Author(s):  
Clusterbean . ◽  
Hand Weeding ◽  
Imazethapyr . ◽  
Pendimethalin . ◽  
Weed Management

A field experiment was conducted during Kharif seasons of 2014 and 2015 at Udaipur (Rajasthan) to find out the effect of weed management on productivity of clusterbean under varying fertility levels. The results revealed that among various weed management practices, two hand weeding 20 and 40 DAS recorded significantly lower weed dry matter, higher weed control efficiency, higher values of yield attributes, seed, haulm and biological yield during both the years over rest of the treatments except sequential application of pendimethalin fb imazethapyr which was statistically at par. Further, application of Imazethapyr fb hand weeding and pendimethalin fb hand weeding also gave comaparable results with pendimethalin fb imazethapyr in terms of weed control efficiency and yields. Among the fertility levels application 20 Kg N + 40 Kg P2O5 ha-1 significantly increased pods plant-1 (24.04), seeds pod-1, (7.12), test weight ( 25.33 g), seed ( 1035 kg ha-1), haulm (2161 kg ha-1) and biological (3196 kg ha-1 ) yield and harvest index ( 31.98 %) of clusterbean over 10 Kg N + 20 Kg P2O5 ha-1 however, it was found statistically at par with fertility level 30 Kg N + 60 Kg P2O5 ha-1. Therefore, clusterbean should be fertilized with 20 Kg N + 40 Kg P2O5 ha-1 and weeds must be controlled with pendimethalin (PE) fb imazethapyr 0.1 kg ha-1 20 DAS .


2015 ◽  
Vol 29 (4) ◽  
pp. 751-757 ◽  
Author(s):  
Jonne Rodenburg ◽  
Kazuki Saito ◽  
Runyambo Irakiza ◽  
Derek W. Makokha ◽  
Enos A. Onyuka ◽  
...  

Time requirements, weed control efficacy, and yield effects of three labor-saving weed technologies were tested against hand weeding during three seasons in 2012 and 2013. The technologies included two hand-operated mechanical weeders, the straight-spike and the twisted-spike floating weeder, and the PRE application of oxadiazon. The straight-spike floating weeder reduced weeding time by 32 to 49%, the twisted-spike floating weeder reduced weeding time by 32 to 56%, and the application of herbicide required 88 to 97% less time than hand weeding. Herbicide application provided the best weed control in two of the three seasons. No differences in weed control efficacy were observed between mechanical and hand weeding. Yield differences were only observed in season 3 with higher rice yields after PRE application of oxadiazon compared with other weed management treatments.


2007 ◽  
Vol 22 (4) ◽  
pp. 246-259 ◽  
Author(s):  
Andrea Peruzzi ◽  
Marco Ginanni ◽  
Marco Fontanelli ◽  
Michele Raffaelli ◽  
Paolo Bàrberi

AbstractWeed management is often the most troublesome technical problem to be solved in organic farming, especially in poorly competitive crops like vegetables. A four-year (2000–2003) series of trials was established to assess the possibility of adopting an innovative non-chemical weed management system in organic carrot grown on the Fucino plateau, i.e., the most important carrot-growing area in Italy. The system utilized for physical weed control was based first on a false seedbed technique followed by pre-sowing weed removal, performed with a special 2 m wide 6-row spring-tine harrow. Prior to crop emergence, a pass with a flame weeder equipped with four 50 cm wide-open flame burners was also performed. Post-emergence weed control consisted of one or more hoeing passes with a purpose-designed 11-tine precision hoe equipped with spring implements (torsion weeders and vibrating tines), in addition to hand weeding. This innovative system was applied to a novel planting pattern (sowing in ten individual rows within 2 m wide beds) and compared to the standard management system of the area (sowing within 2 m wide beds but in five bands, use of spring-tine harrowing and flame weeding pre-emergence and of traditional hoeing post-emergence). The new system was tested in different commercial farms including both early and late-sown carrot. Assessments included machine operative characteristics, labor time, weed density and biomass, crop root yield and yield quality, and economic data (physical weed control costs and crop gross margin). Compared to the standard system, the innovative system usually resulted in reduced labor time (from 28 to 40%) and total costs for physical weed control (on average −416 € ha−1). Use of the precision hoe resulted in intra-row weed reduction ranging from 65 to 90%, which also led to a marked reduction in the labor required for hand weeding. In 2001 the two systems did not differ in terms of yield and yield quality, whereas in 2002 and 2003 the innovative system showed a higher mean density of carrot plants (from 28 to 55%), root yield (from 30 to 42%), and gross margin (from 40 to 100%). Carrot yield was higher in farms which adopted an early sowing whereas root commercial quality was somewhat variable between systems and years. In general, results obtained with the innovative management system look very promising.


Sign in / Sign up

Export Citation Format

Share Document