Exploring the use of legumes as host plant species in Glomus mosseae sporulation

Author(s):  
Monther Mohumad Tahat ◽  
Kamaruzaman Sijam ◽  
Kholoud Alananbeh

The production of high quality, large scale, pathogen free and homogenous mycorrhizal inoculums are required for research purposes and soil bio-fertility. In the current study, a pot culture technique was followed to produce healthy quality and mass quantity of Glomus mosseae spores for research purposes. Five legumes plants were selected {(pea (Pisum sativum), broad bean, (Vicia faba) black eyed beans (Vigna unguiculata) soybean (Glycine max), and mung beans (Phaseolus aureus)}. The legumes were grown for two months under controlled conditions after pre-inoculated with healthy G. mosseae spores. The highest number of spores was counted in the mung beans rhizosphere and it was the best host in nodules weight production and root colonization rate. Soybeans produced the lowest spore’s number. It was found that the correlation between root colonization rate and spores number in the soil was positive. The rhizobium nodule weight was related positively with arbuscular mycorrhizal fungi spores manipulations in the soil.

Revista CERES ◽  
2017 ◽  
Vol 64 (2) ◽  
pp. 197-204 ◽  
Author(s):  
Renata Soares dos Santos ◽  
Joilson Silva Ferreira ◽  
Rafael Nogueira Scoriza

ABSTRACT The low natural fertility of Brazilian soils requires the use of inoculants that facilitate the absorption of nutrients by plants. Arbuscular mycorrhizal fungi such as obligatory biotrophics of active roots perform this function, but access to this resource is limited by the difficulty in producing inoculants. The objective of this study was to investigate the production of AMF inoculants native of soils under different forest covers in Vitória da Conquista, BA, by means of spore quantification, colonization rate and species identification. For this purpose, soils were collected from sites under Mata Nativa (native forest) and plantations of Madeira Nova (Pterogyne nitens) and Eucalyptus, placed into separate 500 mL disposable cups with seeds of Brachiaria sp. and cultivated for five months. Spores were quantified and the AMF species identified in the control soil (without brachiaria) and in the cups cultivated with brachiaria at each month. From the first month, the colonization rate of brachiaria roots was evaluated. The inoculants produced showed differences in the number of spores and species, in the AMF species identified, and in the root colonization rate as a function of the forest cover. Thus, considering the increase in the number of spores, species and colonization over time, the inoculant produced from the soil under native forest was more promising for utilization.


2011 ◽  
Vol 80 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Szymon Zubek ◽  
Janusz Błaszkowski ◽  
Piotr Mleczko

Arbuscular mycorrhizal fungi (AMF) and dark septate endophyte (DSE) associations were studied in 36 medicinal plant species from 33 genera and 17 families, collected from the Botanical Garden of the Jagiellonian University in Kraków. Arbuscular mycorrhiza (AM) was found in 34 species (94%); 26 were of the <em>Arum</em>-type, 4 – <em>Paris </em>and 4 taxa revealed intermediate morpho­logy. The abundance of AMF hyphae in roots varied with particular species, ranging from 2.5% (<em>Helianthus tuberosus</em>) to 77.9% (<em>Convallaria majalis</em>). The mycelium of DSE was observed in 13 plant species (36%), however, the percentage of root colonization by these fungi was low. Spores of 7 AMF species (Glomeromycota) were isolated from trap cultures established from rhizosphere soils of the investigated plants: <em>Archaeospora trappei </em>(Archaeosporaceae), <em>Glomus aureum</em>, <em>Glomus caledonium</em>, <em>Glomus claroideum</em>, <em>Glomus constrictum</em>, <em>Glomus mosseae</em>, <em>Glomus versiforme </em>(Glomeraceae). Our results are the first detailed report of root endophyte associations of the plant species under study. Moreover, the mycorrhizal status of 14 plant species is reported for the first time.


2013 ◽  
Vol 93 (6) ◽  
pp. 1201-1208 ◽  
Author(s):  
A. Faye ◽  
Y. Dalpé ◽  
K. Ndung'u-Magiroi ◽  
J. Jefwa ◽  
I. Ndoye ◽  
...  

Faye, A., Dalpé, Y., Ndung'u-Magiroi, K., Jefwa, J., Ndoye, I., Diouf, M. and Lesueur, D. 2013. Evaluation of commercial arbuscular mycorrhizal inoculants. Can. J. Plant Sci. 93: 1201–1208. In order to improve the use of commercial inoculants, 12 arbuscular mycorrhizal fungi (AMF) inoculants were evaluated in a two-step experiment under greenhouse conditions using maize. First, commercial mycorrhizal inoculants were propagated in a trap pot culture experiment under sterilized sand to evaluate their potential for maize (Zea may L.) root colonization as compared with an indigenous soil inoculum and to survey the AMF species present in the products. Three inoculants significantly increased root colonization levels compared with a soil inoculum. Instead of 12 declared AMF species, 13 fungal strains were extracted from the pot culture survey, including five undeclared species, while four declared species did not produce spores. In a second experiment, commercial products were inoculated into soil to assess their impact on maize growth and yield. Six weeks after planting, seven inoculants increased root colonization levels compared with control soil, while only three inoculants increased slightly the shoot biomass of maize plants. These experiments highlight the need to pre-evaluate commercial mycorrhizal inoculants on a selected crop and regional soil before launching large-scale field use.


2021 ◽  
Vol 11 (11) ◽  
pp. 5297
Author(s):  
Stavros D. Veresoglou ◽  
Leonie Grünfeld ◽  
Magkdi Mola

The roots of most plants host diverse assemblages of arbuscular mycorrhizal fungi (AMF), which benefit the plant hosts in diverse ways. Even though we understand that such AMF assemblages are non-random, we do not fully appreciate whether and how environmental settings can make them more or less predictable in time and space. Here we present results from three controlled experiments, where we manipulated two environmental parameters, habitat connectance and habitat quality, to address the degree to which plant roots in archipelagos of high connectivity and invariable habitats are colonized with (i) less diverse and (ii) easier to predict AMF assemblages. We observed no differences in diversity across our manipulations. We show, however, that mixing habitats and varying connectivity render AMF assemblages less predictable, which we could only detect within and not between our experimental units. We also demonstrate that none of our manipulations favoured any specific AMF taxa. We present here evidence that the community structure of AMF is less responsive to spatio-temporal manipulations than root colonization rates which is a facet of the symbiosis which we currently poorly understand.


Heliyon ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. e00936 ◽  
Author(s):  
Boubacar A. Kountche ◽  
Mara Novero ◽  
Muhammad Jamil ◽  
Tadao Asami ◽  
Paola Bonfante ◽  
...  

2018 ◽  
Author(s):  
Ivan D. Mateus ◽  
Frédéric G. Masclaux ◽  
Consolée Aletti ◽  
Edward C. Rojas ◽  
Romain Savary ◽  
...  

AbstractArbuscular mycorrhizal fungi (AMF) impact plant growth and are a major driver of plant diversity and productivity. We quantified the contribution of intra-specific genetic variability in cassava (Manihot esculenta) and Rhizophagus irregularis to gene reprogramming in symbioses using dual RNA-sequencing. A large number of cassava genes exhibited altered transcriptional responses to the fungus but transcription of most of these plant genes (72%) responded in a different direction or magnitude depending on the plant genotype. Two AMF isolates displayed large differences in their transcription, but the direction and magnitude of the transcriptional responses for a large number of these genes was also strongly influenced by the genotype of the plant host. This indicates that unlike the highly conserved plant genes necessary for the symbiosis establishment, plant and fungal gene transcriptional responses are not conserved and are greatly influenced by plant and fungal genetic differences, even at the within-species level. The transcriptional variability detected allowed us to identify an extensive gene network showing the interplay in plant-fungal reprogramming in the symbiosis. Key genes illustrated that the two organisms jointly program their cytoskeleton organisation during growth of the fungus inside roots. Our study reveals that plant and fungal genetic variation plays a strong role in shaping the genetic reprograming in response to symbiosis, indicating considerable genotype x genotype interactions in the mycorrhizal symbiosis. Such variation needs to be considered in order to understand the molecular mechanisms between AMF and their plant hosts in natural communities.


2003 ◽  
Vol 69 (5) ◽  
pp. 2816-2824 ◽  
Author(s):  
Fritz Oehl ◽  
Ewald Sieverding ◽  
Kurt Ineichen ◽  
Paul Mäder ◽  
Thomas Boller ◽  
...  

ABSTRACT The impact of land use intensity on the diversity of arbuscular mycorrhizal fungi (AMF) was investigated at eight sites in the “three-country corner” of France, Germany, and Switzerland. Three sites were low-input, species-rich grasslands. Two sites represented low- to moderate-input farming with a 7-year crop rotation, and three sites represented high-input continuous maize monocropping. Representative soil samples were taken, and the AMF spores present were morphologically identified and counted. The same soil samples also served as inocula for “AMF trap cultures” with Plantago lanceolata, Trifolium pratense, and Lolium perenne. These trap cultures were established in pots in a greenhouse, and AMF root colonization and spore formation were monitored over 8 months. For the field samples, the numbers of AMF spores and species were highest in the grasslands, lower in the low- and moderate-input arable lands, and lowest in the lands with intensive continuous maize monocropping. Some AMF species occurred at all sites (“generalists”); most of them were prevalent in the intensively managed arable lands. Many other species, particularly those forming sporocarps, appeared to be specialists for grasslands. Only a few species were specialized on the arable lands with crop rotation, and only one species was restricted to the high-input maize sites. In the trap culture experiment, the rate of root colonization by AMF was highest with inocula from the permanent grasslands and lowest with those from the high-input monocropping sites. In contrast, AMF spore formation was slowest with the former inocula and fastest with the latter inocula. In conclusion, the increased land use intensity was correlated with a decrease in AMF species richness and with a preferential selection of species that colonized roots slowly but formed spores rapidly.


Author(s):  
V.P. Soniya ◽  
P.S. Bhindhu

Background: Magnesium deficiency has become a major nutritional disorder in lateritic soils of Kerala. Appropriate magnesium fertilization is the best strategy to combat deficiency issues. Apart from correcting nutritional deficiency, magnesium fertilization has an influence on the growth of beneficial microbes such as nitrogen fixing bacterias and arbuscular mycorrhizal fungi. The experiment aimed to investigate the effect of magnesium fertilization on crop yield and population rhizosphere micoflora of cowpea in lateritic soils of Kerala.Methods: A pot culture experiment was conducted with a gradient of magnesium additions ranging from 5 mg kg-1 to 80 mg kg-1 of soil along with recommended dose of fertilizers. Population of rhizobium, free living nitrogen fixing bacteria, spore count of arbuscular mycorrhizal fungi and per cent root colonization of arbuscular mycorrhizal fungi were studied during flowering. The available magnesium and magnesium uptake were also worked out during harvest. Yield and yield contributing characteristics of cowpea were measured during harvest stage.Result: Magnesium addition produced significant variations in population of rhizobium and free- living nitrogen fixing bacteria whereas spore count of AMF and per cent root colonization of AMF did not vary according to the added doses of magnesium. A higher population of rhizobium, free living nitrogen fixers, root nodules, magnesium uptake, plant height and yield were obtained in the treatment where magnesium was applied @ 10 mg kg-1 soil.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ziheng Song ◽  
Yinli Bi ◽  
Jian Zhang ◽  
Yunli Gong ◽  
Huihui Yang

Abstract It is urgent to restore the ecological function in open-pit mining areas on grassland in Eastern China. The open-pit mines have abundant of mining associated clay, which is desirable for using as a soil source for ecological restoration. The mining associated clay in Hulunbuir district, Inner Mongolia was selected and mixed with a sandy soil at a ratio of 1:1 (S_C soil). Also, effects of arbuscular mycorrhizal fungi (AMF) inoculation on soil functions were studied. The aboveground and underground biomass of maize in S_C soil was 1.49 and 2.41 times higher than that of clay soil, respectively. In the topsoil and S_C soil, the growth hormone (IAA) and cytokinin (CTK) levels of maize were higher than that of clay, while abscission acid (ABA) levels were lower. The inoculation with AMF could significantly improve the biomass of maize and enhance the stress resistance of plants. Through structural equation model (SEM) analyses, it was found that the soil type and AMF inoculation had the most direct impact on maize growth and biomass content. These finds extend our knowledge regarding a low-cost method for physical and biological improvement of mining associated clay, and to provide theoretical support for large-scale application in the future.


Sign in / Sign up

Export Citation Format

Share Document