scholarly journals CURRENT CONCEPTS OF ATOPIC DERMATITIS IN CHILDREN: PROBLEMS AND PROSPECTS

Author(s):  
Galina I. Smirnova

There are presented modern data describing the current understanding of the pathogenesis of atopic dermatitis (AD): a genetic predisposition to atopy, disruptions of epidermal barrier integrity and a cascade of immune responses, contributing allergic inflammation in the skin. There are both described several mechanisms of acute and chronic phases of AD, the main directions of pathogenetically substantiated treatment of AD in children and indicated the prospects of new preparations specific blockers of proinflammatory cytokines involved in the development of AD - crisaborole, apremilast, dupilumab, lebrikizumab, tralokinumab, tezepelumab. There is especially presented in details external therapy of atopic skin lesions in children with the use of means of modern dermatological cosmetics.

2017 ◽  
Vol 14 (4-5) ◽  
pp. 30-39
Author(s):  
G I Smirnova

Modern data describing the current understanding of the pathogenesis of atopic dermatitis (AD): a genetic predisposition to atopy, disturbances of the intestinal microbiome, disruptions of epidermal barrier integrity and a cascade of immune responses, contributing allergic inflammation in the skin are presented. There are both described several mechanisms of acute and chronic phases of AD, the main directions of pathogenetically substantiated treatment of AD in children and indicated the prospects of new preparations specific blockers of proinflammatory cytokines involved in the development of AD - crisaborole, dupilumab, apremilast et al. External therapy of atopic skin lesions in AD children with modern dermatological cosmetics is presented.


2014 ◽  
Vol 11 (4) ◽  
pp. 59-63
Author(s):  
E T KINDEEVA ◽  
N G KOROTKII ◽  
A N PAMPURA

Background. Structural and functional damages of the epidermal barrier in patients with atopic dermatitis promote the entry of allergens and development of Th2-type allergic inflammation. Moisturizers containing lipids increase the physiological antiinflammatory effects of topical corticosteroids (TGKS), improve the epidermal barrier and reduce the duration of TGKS using preventing further infringement barrier. To evaluate the clinical efficacy of emollient milk Xemose in children with atopic dermatitis. Materials and methods. We examined 27 children with atopic dermatitis. Children were divided into 2 groups: patients in group 1 (n=14) used emollient milk Xemose twice a day on the skin lesions and limbs in the complex therapy, patients in the 2nd group (n=13) received combined therapy incorporating traditional dampening agents on the basis of lanolin (Unna cream) 3 times daily. All patients underwent measurement of transepidermal water loss (TEWl) (Tewameter TM 300, Multi Probe Adapter MPA 5/9, Courage + Khazaka) and the pH of the skin (Skin-pH-Meter, Multi Probe Adapter MPA 5/9, Courage + Khazaka) before and after 2 weeks of therapy. Results. Patients in groupthat used Xemose milk and children in group with Unna cream after 2 weeks showed a statistically significant decrease of TEWl (p=0,041 and p=0,04, respectively). TEWl was significantly lower in children treated for 2 weeks with milk Xemose (p=0,027) than in children treated with Unna cream. in both groups pH skin surface have not changed (р=0,22 and р=0,22 respectively). Conclusion. Clinical efficacy of milk Xemose as compound improving skin barrier function in children with atopic dermatitis was shown.


2019 ◽  
Vol 20 (10) ◽  
pp. 2490 ◽  
Author(s):  
Wen-Chung Huang ◽  
Chun-Hsun Huang ◽  
Sindy Hu ◽  
Hui-Ling Peng ◽  
Shu-Ju Wu

Atopic dermatitis (AD) is a recurrent allergic skin disease caused by genetic and environmental factors. Patients with AD may experience immune imbalance, increased levels of mast cells, immunoglobulin (Ig) E and pro-inflammatory factors (Cyclooxygenase, COX-2 and inducible NO synthase, iNOS). While spilanthol (SP) has anti-inflammatory and analgesic activities, its effect on AD remains to be explored. To develop a new means of SP, inflammation-related symptoms of AD were alleviated, and 2,4-dinitrochlorobenzene (DNCB) was used to induce AD-like skin lesions in BALB/c mice. Histopathological analysis was used to examine mast cells and eosinophils infiltration in AD-like skin lesions. The levels of IgE, IgG1 and IgG2a were measured by enzyme-linked immunosorbent assay (ELISA) kits. Western blot was used for analysis of the mitogen-activated protein kinase (MAPK) pathways and COX-2 and iNOS protein expression. Topical SP treatment reduced serum IgE and IgG2a levels and suppressed COX-2 and iNOS expression via blocked mitogen-activated protein kinase (MAPK) pathways in DNCB-induced AD-like lesions. Histopathological examination revealed that SP reduced epidermal thickness and collagen accumulation and inhibited mast cells and eosinophils infiltration into the AD-like lesions skin. These results indicate that SP may protect against AD skin lesions through inhibited MAPK signaling pathways and may diminish the infiltration of inflammatory cells to block allergic inflammation.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3638
Author(s):  
Yoon-Young Sung ◽  
Heung-Joo Yuk ◽  
Won-Kyung Yang ◽  
Seung-Hyung Kim ◽  
Dong-Seon Kim

Atopic dermatitis is a persistent inflammatory skin disorder. Siraitia grosvenorii fruits (monk fruit or nahangwa in Korean, NHG) are used as a natural sweetener and as a traditional medicine for the treatment of asthma and bronchitis. We evaluated the activity of S. grosvenorii residual extract (NHGR) on allergic inflammation of atopic dermatitis in a Dermatophagoides farinae mite antigen extract (DfE)-treated NC/Nga murine model and in vitro. Oral administration of NHGR significantly reduced epidermal hyperplasia and inflammatory cell infiltration in the skin lesions of DfE-induced atopic dermatitis, as well as the dermatitis severity score. NHGR reduced serum immunoglobulin E levels. Splenic concentrations of IFN-γ, interleukin (IL)-4, IL-5, and IL-13 were reduced by NHGR administration. Immunohistofluorescence staining showed that NHGR administration increased the protein levels of claudin-1, SIRT1, and filaggrin in atopic dermatitis skin lesions. In addition, NHGR inhibited the phosphorylation of mitogen-activated protein kinases and decreased filaggrin and chemokine protein expression in TNF-α/IFN-γ-induced human keratinocytes. Moreover, NHGR also inhibited histamine in mast cells. The quantitative analysis of NHGR revealed the presence of grosvenorine, kaempferitrin, and mogrosides. These results demonstrate that NHGR may be an efficient therapeutic agent for the treatment of atopic dermatitis.


2011 ◽  
Vol 63 (3) ◽  
pp. 184-190 ◽  
Author(s):  
Tsuyoshi Mitsuishi ◽  
Kenji Kabashima ◽  
Hideaki Tanizaki ◽  
Ikuroh Ohsawa ◽  
Fumino Oda ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhifeng Fang ◽  
Lingzhi Li ◽  
Hao Zhang ◽  
Jianxin Zhao ◽  
Wenwei Lu ◽  
...  

Atopic dermatitis (AD) is a public health concern and is increasing in prevalence in urban areas. Recent advances in sequencing technology have demonstrated that the development of AD not only associate with the skin microbiome but gut microbiota. Gut microbiota plays an important role in allergic diseases including AD. The hypothesis of the “gut-skin” axis has been proposed and the cross-talk mechanism between them has been gradually demonstrated in the research. Probiotics contribute to the improvement of the intestinal environment, the balance of immune responses, regulation of metabolic activity. Most studies suggest that probiotic supplements may be an alternative for the prevention and treatment of AD. This study aimed to discuss the effects of probiotics on the clinical manifestation of AD based on gut microbial alterations. Here we reviewed the gut microbial alteration in patients with AD, the association between gut microbiota, epidermal barrier, and toll-like receptors, and the interaction of probiotics and gut microbiota. The potential mechanisms of probiotics on alleviating AD via upregulation of epidermal barrier and regulation of immune signaling had been discussed, and their possible effective substances on AD had been explored. This provides the supports for targeting gut microbiota to attenuate AD.


2016 ◽  
Vol 65 (3) ◽  
pp. 253-259 ◽  
Author(s):  
Jacek Międzobrodzki

Staphylococcus aureus colonizes the mucous membrane of the nasal vestibule of a significant number of healthy people. These microorganisms are opportunistic pathogens, that in favorable conditions, may cause infections of various course, location or manifestation. Secondary infections emerge in cases when other risk factors contribute to such a change. One of the diseases during which S. aureus changes its saprophytic character to a pathogenic one is atopic dermatitis (AD), an allergic skin condition of a chronic and recurrent nature. Patients with AD are highly predisposed to secondary staphylococcal infections due to active S. aureus colonization of the stratum corneum, damage of the skin barrier or a defective immune response. Microorganisms present in skin lesions destroy the tissue by secreting enzymes and toxins, and additionally stimulate secondary allergic reactions. The toxins secreted by strains of S. aureus also act as superantigens and penetrate the skin barrier contributing to a chronic inflammation of the atopic skin lesions. The S. aureus species also releases proinflammatory proteins, including enzymes that cause tissue damage. When initiating treatment it is particularly important to properly assess that the onset of the secondary bacterial infection is caused by S. aureus and thus justifying the inclusion of antibiotic therapy. Depending on the severity and extent of the staphylococcal infection, topical antibiotics are used, usually mupirocin or fusidic acid, or general antibiotic treatment is introduced. Another therapeutic strategy without antibiotics has given a positive effect in patients.


2018 ◽  
Vol 9 (4) ◽  
pp. 643-652 ◽  
Author(s):  
T. Kawahara ◽  
N. Hanzawa ◽  
M. Sugiyama

Lactobacillus strains, a major group of lactic acid bacteria, are representative food microorganisms that have many potential beneficial effects via their interactions with immune and intestinal epithelial cells. However, little is known about the effect of Lactobacillus strains on atopic dermatitis via keratinocytes, which comprise the physical barrier of the skin. In this study, we report that Lactobacillus strains have a significant suppressive effect on tumour necrosis factor (TNF)-α-induced expression and production of thymus and activation-regulated chemokine (TARC), a T helper 2 cell chemokine responsible for atopic dermatitis, in human keratinocytes. An RNA interference study showed that the effect of Lactobacillus reuteri strain Japan Collection of Microorganisms (JCM) 1112, the most suppressive strain, depended on the presence of Toll-like receptor 2 and the induction of A20 (also known as TNF-α-induced protein 3) and cylindromatosis in HaCaT cells. Topical application of a water-soluble extract of homogenised JCM 1112 cells significantly suppressed the development of house dust mite-induced atopic skin lesions and TARC expression at the lesion sites in NC/Nga mice. Our study provides new insights into the use of Lactobacillus strains as suppressive agents against keratinocyte-involved atopic inflammation of the skin.


Sign in / Sign up

Export Citation Format

Share Document