scholarly journals The Effects of Resistance and Endurance Training on the Liver Tissue FNDC5 mRNA Gene Expression in Male Rats

2017 ◽  
Vol 5 (2) ◽  
pp. 51-60 ◽  
Author(s):  
Amir Rashidlamir ◽  
Mohammad Hoseinzadeh ◽  
Leili Zeiaddini Dashtkhaki ◽  
◽  
◽  
...  
2020 ◽  
Author(s):  
Nahid Jalilian Hamed ◽  
Reza Gharakhanlou ◽  
Maghsoud Peeri

- Diabetic neuropathy can cause disorders in axon transmission, changes in the extracellular matrix, and peripheral nerve damages. However, its mechanism, along with the beneficial effects of exercise on these disorders is not entirely clear. The aim of the current study was to assess changes in fibronectin mRNA gene expression level of the sciatic nerve in rats with streptozotocin-induced diabetes after endurance training. Eighteen male Wistar rats (10 weeks old with 250±20 gr weight) were randomly assigned to three groups, including healthy, induced diabetes and induced diabetes plus endurance training. Induction of diabetes was conducted using an intraperitoneal injection of a single dose of streptozotocin (STZ). Neuropathy was confirmed using the behavioral tests. Rats in induced diabetes plus training group had 8 weeks of moderate and increasing intensity endurance training on the treadmill. The Fibronectin mRNA gene expression level of the sciatic nerve was assessed using Real-time-PCR. Changes in fibronectin protein and myelin thickness were measured by immunohistochemistry and luxol fast blue staining. The mean and standard deviation was used to report descriptive data. Data were entered into SPSS 22. Fibronectin mRNA gene expression level (1.90) of sciatic nerve fibronectin protein and myelin thickness reduced significantly due to diabetes (P<0.05). Eight weeks of endurance training increased fibronectin gene expression of sciatic nerve fibronectin protein and prevented further destruction of myelin, which was statistically significant. The results showed that diabetes leads to changes in the extracellular matrix and the reduction of the sciatic nerve myelin thickness. Endurance training as a non-drug strategy is effective in preventing these damages.


2006 ◽  
Vol 82 (6) ◽  
pp. 877-887 ◽  
Author(s):  
J. Sehm ◽  
H. Lindermayer ◽  
H. H. D. Meyer ◽  
M. W. Pfaffl

Flavan-3-ols are a class of flavonoids that are widely distributed in fruits and beverages including red wine and apples. Consumption of flavanoid-rich food has been shown to exhibit anti-microbial, anti-oxidative, anti-inflammatory, and immune-modulating effects. To test the nutritional effects of flavanols on mRNA gene-expression of inflammatory and apoptotic marker genes, piglets were given two flavanoids-rich feeding regimens: a low flavanoid standard diet (SD) was compared with diets enriched with 3·5% apple pomace (APD) or 3·5% red-wine pomace (RWPD). The influence on mRNA expression levels was investigated in different immunological active tissues and in the gastro-intestinal tract (GIT). The investigation took place from 1 week prior weaning to 19 days post weaning in 78 piglets. The expression of expressed marker genes was determinate by one-step quantitative real-time (qRT-PCR): TNFα, NFκB as pro-inflammatory; IL10, as anti-inflammatory; caspase 3 as apoptosis; cyclin D1 as cell cycle marker; and nucleosome component histon H3 as reference gene.The feeding regimens result in tissue individual regulation of mRNA gene expression in all investigated organs. It was discovered that there were significant differences between the applied diets and significant changes during feeding time curse. Both pomace treatments caused a significant up-regulation of all investigated genes in liver. The effect on mesenterial lymph nodes and spleen was not prominent. In the GIT, the treatment groups showed a inhibitory effects on gene expression mainly in stomach and jejunum (NFκB, cyclin D1 and caspase 3). In colon the trend of caspase 3 was positive with the greatest change in the RWPD group.In jejunum and stomach the cell cycle turn over was reduced, whereas in liver the cell turn over was highly accelerate. The influence on inflammatory marker gene expression is mainly relevant in stomach. It is presume that both flavanoid rich feeding regimens have the potential to modulate the mRNA expressions of inflammatory, proliferation and apoptotic marker genes in the GIT and piglet organs.


2011 ◽  
Vol 2 (4) ◽  
Author(s):  
Sarah Wilson ◽  
Tianli Zhu ◽  
Rajesh Khanna ◽  
Michael Pritz

AbstractGene expression was investigated in the major brain subdivisions (telencephalon, diencephalon, midbrain and hindbrain) in a representative reptile, Alligator mississipiensis, during the later stages of embryonic development. The following genes were examined: voltage-gated sodium channel isoforms: NaV1.1 and NaV1.2; synaptic vesicle 2a (SV2a); synaptophysin; and calbindin 2. With the exception of synaptophysin, which was only expressed in the telencephalon, all genes were expressed in all brain regions sampled at the time periods examined. For NaV1.1, gene expression varied according to brain area sampled. When compared with NaV1.1, the pattern of NaV1.2 gene expression differed appreciably. The gene expression of SV2a was the most robust of any of the genes examined. Of the other genes examined, although differences were noted, no statistically significant changes were found either between brain part or time interval. Although limited, the present analysis is the first quantitative mRNA gene expression study in any reptile during development. Together with future experiments of a similar nature, the present gene expression results should determine which genes are expressed in major brain areas at which times during development in Alligator. When compared with other amniotes, these results will prove useful for determining how gene expression during development influences adult brain structure.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3909
Author(s):  
Melissa S. Totten ◽  
Derek M. Pierce ◽  
Keith M. Erikson

The aim of this study was to determine the impact of diet-induced obesity (DIO) on trace element homeostasis and gene expression in the olfactory bulb and to identify potential interaction effects between diet, sex, and strain. Our study is based on evidence that obesity and olfactory bulb impairments are linked to neurodegenerative processes. Briefly, C57BL/6J (B6J) and DBA/2J (D2J) male and female mice were fed either a low-fat diet or a high-fat diet for 16 weeks. Brain tissue was then evaluated for iron, manganese, copper, and zinc concentrations and mRNA gene expression. There was a statistically significant diet-by-sex interaction for iron and a three-way interaction between diet, sex, and strain for zinc in the olfactory bulb. Obese male B6J mice had a striking 75% increase in iron and a 50% increase in manganese compared with the control. There was an increase in zinc due to DIO in B6J males and D2J females, but a decrease in zinc in B6J females and D2J males. Obese male D2J mice had significantly upregulated mRNA gene expression for divalent metal transporter 1, alpha-synuclein, amyloid precursor protein, dopamine receptor D2, and tyrosine hydroxylase. B6J females with DIO had significantly upregulated brain-derived neurotrophic factor expression. Our results demonstrate that DIO has the potential to disrupt trace element homeostasis and mRNA gene expression in the olfactory bulb, with effects that depend on sex and genetics. We found that DIO led to alterations in iron and manganese predominantly in male B6J mice, and gene expression dysregulation mainly in male D2J mice. These results have important implications for health outcomes related to obesity with possible connections to neurodegenerative disease.


2002 ◽  
Vol 30 (5) ◽  
pp. A123-A123
Author(s):  
C.L. Curtis ◽  
S.G. Rees ◽  
C. Wilson ◽  
R. Williams ◽  
C. Dent ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document