SEED MASS AND MAST SEEDING ENHANCE DISPERSAL BY A NEOTROPICAL SCATTER-HOARDING RODENT

2004 ◽  
Vol 74 (4) ◽  
pp. 569-589 ◽  
Author(s):  
Patrick A. Jansen ◽  
Frans Bongers ◽  
Lia Hemerik
Author(s):  
Rafał Zwolak ◽  
Dale Clement ◽  
Andrew Sih ◽  
Sebastian J. Schreiber

Many plant species worldwide are dispersed by scatter-hoarding granivores: animals that hide seeds in numerous, small caches for future consumption. Yet, the evolution of scatter-hoarding is difficult to explain because undefended caches are at high risk of pilferage. Previous models have attempted to solve this problem by giving cache owners large advantages in cache recovery, by kin selection, or by introducing reciprocal pilferage of ‘shared’ seed resources. However, the role of environmental variability has been so far overlooked in this context. One important form of such variability is masting, which is displayed by many plant species dispersed by scatterhoarders. We use a mathematical model to investigate the influence of masting on the evolution of scatter-hoarding. The model accounts for periodically varying annual seed fall, caching and pilfering behaviour, and the demography of scatterhoarders. The parameter values are based mostly on research on European beech ( Fagus sylvatica ) and yellow-necked mice ( Apodemus flavicollis ). Starvation of scatterhoarders between mast years decreases the population density that enters masting events, which leads to reduced seed pilferage. Satiation of scatterhoarders during mast events lowers the reproductive cost of caching (i.e. the cost of caching for the future rather than using seeds for current reproduction). These reductions promote the evolution of scatter-hoarding behaviour especially when interannual variation in seed fall and the period between masting events are large. This article is part of the theme issue ‘The ecology and evolution of synchronized seed production in plants’.


2020 ◽  
Author(s):  
Yang Liu ◽  
Yousry A. El-Kassaby

AbstractPatterns of crop production in mast species do not track crop-year climate, but instead are regulated by climate cues in prior-years. Whether the pattern of year-to-year seed mass variation is coupled in time with mast seeding, maintaining seed mass-number trade-offs, and coherently driven by similar climate cues as other seed traits (e.g. seed germination) remains unknown. Using ca. 6,000 long-term seed inventory data over the years 1955-2015 in conifers, this retrospective study revealed the temporal patterns of mast species’ seed mass and its associated trait, seed germination. To pinpoint their ecological drivers, pairwise correlation analysis was performed between each trait and seasonal climates in crop year and four prior-years. Using climate variables key to each trait, regression models were constructed to project trait values. Findings showed minor seed mass variation among years, which rejects the generality of seed mass-number trade-offs in many plant species. This result reasonably arises as the economies of scale (compensating benefits) theory are often used to account for mast seeding but not for seed mass. Moreover, final germination fraction also varied little over time, but exhibited an increasing tendency. In addition, we found that temperature-based climate variables drive seed mass, number, and germination variation, but these variables in different seasons of crop year or prior-years did not have equal influences on trait variability. Finally, regression models showed that the number of frost-free days and evapotranspiration are crucial to the three traits and climate in autumn is a critical season, followed by summer and winter. This study holds considerable promise for explaining reproductive strategies of taxonomic groups with mast seeding characteristics in allocating reproductive resources to different life-history traits using ecological signals.


2019 ◽  
Author(s):  
Rafał Zwolak ◽  
Dale Clements ◽  
Andrew Sih ◽  
Sebastian J. Schreiber

ABSTRACTMany plant species worldwide are dispersed by scatterhoarding granivores: animals that hide seeds in numerous, small caches for future consumption. Yet, the evolution of scatterhoarding is difficult to explain because undefended caches are at high risk of pilferage. Previous models have attempted to solve this problem by giving cache owners unrealistically large advantages in cache recovery, by kin selection (but individuals that cache and those that pilfer are usually unrelated), or by introducing reciprocal pilferage of “shared” seed resources. However, the role of environmental variability has been so far overlooked in this context. One important form of such variability is masting, which is displayed by many plant species dispersed by scatterhoarders. We use a mathematical model to investigate the influence of masting on the evolution of scatter-hoarding. The model accounts for periodically varying annual seed fall, caching and pilfering behavior, and the demography of scatterhoarders. Masting, through its effects on population density, reduces cache pilferage and lowers the reproductive cost of caching (i.e. the cost of caching for the future rather than using seeds for current reproduction). These reductions promote the evolution of scatter-hoarding behavior especially when interannual variation in seed fall and the period between masting events are high.


Bird Behavior ◽  
1997 ◽  
Vol 12 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Thomas A. Waite ◽  
John D. Reevet

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 711
Author(s):  
Zdzisław Kaliniewicz ◽  
Dariusz J. Choszcz

Viburnum is a genus of colorful and ornamental plants popular in landscape design on account of their high esthetic appeal. The physical properties of viburnum seeds have not been investigated in the literature to date. Therefore, the aim of this study was to characterize the seeds of selected Viburnum species and to search for potential relationships between their physical attributes for the needs of seed sorting operations. The basic physical parameters of the seeds of six Viburnum species were measured, and the relationships between these attributes were determined in correlation and regression analyses. The average values of the evaluated parameters were determined in the following range: terminal velocity—from 5.6 to 7.9 m s−1, thickness—from 1.39 to 1.87 mm, width—from 3.59 to 6.33 mm, length—from 5.58 to 7.44 mm, angle of external friction—from 36.7 to 43.8°, mass—from 16.7 to 35.0 mg. The seeds of V. dasyanthum, V. lentago and V. sargentii should be sorted in air separators, and the seeds of V. lantana and V. opulus should be processed with the use of mesh screens with round apertures to obtain uniform size fractions. The seeds of V. rhytodophyllum cannot be effectively sorted into batches with uniform seed mass, but they can be separated into groups with similar dimensions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ajibola B. Oyedeji ◽  
Olajide P. Sobukola ◽  
Ezekiel Green ◽  
Oluwafemi A. Adebo

AbstractThe physical properties and water absorption kinetics of three varieties of Mucuna beans (Mucuna pruriens, Mucuna rajada and Mucuna veracruz) were determined in this study. Physical properties including length, width, thickness, geometric mean diameter, sphericity, porosity, bulk density, area, volume and one thousand seed mass were calculated while hydration kinetics was studied by soaking Mucuna beans in water at 30 °C, 40 °C and 50 °C and measuring water uptake at 9 h interval. Peleg’s equation was used to model the hydration characteristics and Arrhenius equation was used to describe the effect of temperature on Peleg’s rate constant k1 and to obtain the activation energies for soaking. Significant variations were observed in almost all the physical properties of the different varieties, however, there were no significant differences (p < 0.05) in their thicknesses and bulk densities. The effectiveness of fit of Peleg’s model (R2) increased with increase in soaking temperature. Peleg’s rate constant k1 decreased with increase in soaking temperature while k2 increased with temperature increase. Activation energies of Mucuna pruriens, Mucuna rajada and Mucuna veracruz were 1613.24 kJ/mol, 747.95 kJ/mol and 2743.64 kJ/mol, respectively. This study provides useful information about the properties of three varieties of Mucuna beans that could be of importance to processors and engineers for process design and optimization.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2012
Author(s):  
Samantha Jo Grimes ◽  
Filippo Capezzone ◽  
Peteh Mehdi Nkebiwe ◽  
Simone Graeff-Hönninger

Rising consumer attraction towards superfoods and the steadily increasing demand for healthy, environmentally sustainable, and regionally produced food products has sharpened the demand for chia. Over the course of 4 years, two early flowering chia varieties belonging to Salvia hispanica L., and Salvia columbariae Benth. Species were identified to complete their phenological development and, therefore, able to reach maturity under a photoperiod >12 h, thus enabling the cultivation of chia in central Europe—more specifically, in southwestern Germany—consistently for the first time. Results obtained by the conducted field trial in 2018 showed that chia seed yields and thousand-seed mass ranged from 284.13 to 643.99 kg ha−1 and 0.92 to 1.36 g, respectively. Further, the statistical analyses showed that the protein content of the cultivated chia varieties ranged from 22.14 to 27.78%, the mucilage content varied from 10.35 to 20.66%, and the crude oil content amounted up to 28.00 and 31.73%. Fatty acid profiles were similar to previously reported data with α-Linolenic acid being the most prominent one, ranging from 60.40 to 65.87%, and we obtained ω6:ω3 ratios between 0.2 and 0.3. In conclusion, chia could represent a promising raw material from a nutritional point of view, while being able to diversify the local food basis of southwestern Germany.


1995 ◽  
Vol 46 (5) ◽  
pp. 1027 ◽  
Author(s):  
FP Smith ◽  
PS Cocks ◽  
MA Ewing

Cluster clover is a widely distributed and ecologically successful introduced legume in southern Australia. In an attempt to understand the role of genetic variation in this success, morphological and physiological traits were measured in 94 accessions from southern Australia and 6 from the Mediterranean basin. Flowering time ranged from 105 to 185 days after sowing, but was not strongly correlated with annual rainfall or length of growing season at the site of collection. Variation in other traits partitioned the populations into two morphs which, apart from flowering time and leaf marker, were largely homogeneous. The morphs differed significantly in floret number per inflorescence (22 v. 32-37) and seed mass (379 8g v. 523 8g), had different growth habits and strong within-morph associations between leaf markers and stipule and petal coloration. The morphs differed in their distributions within southern Australia and the pattern of distribution was related to summer maximum temperatures, winter minimum temperatures and spring rainfall. These results demonstrate that genetic variation has been important to the success of cluster clover and suggests that the variation is organized. The pattern of variation observed and its relationship to ecogeography is consistent with findings for other highly inbreeding species. A map of the species distribution in Western Australia is presented.


Weed Science ◽  
2006 ◽  
Vol 54 (1) ◽  
pp. 114-120 ◽  
Author(s):  
Husrev Mennan ◽  
Mathieu Ngouajio

Catchweed bedstraw and wild mustard each produce two populations per year: a winter population (WP) in June, and a summer population (SP) in September. Experiments were conducted to determine whether the WP and SP differ in seed mass and seasonal germination. Seeds of both weeds were buried at 0, 5, 10, and 20 cm in cultivated fields, and retrieved at monthly intervals for 24 mo for germination tests in the laboratory. Additionally, seedling emergence from seeds buried at 0, 5, and 10 cm in the field was evaluated for 1 yr. Seeds from the WP were heavier than those from the SP for both species. Germination of exhumed seeds was affected by burial depth and by seed population. It was highest for seeds that remained on the soil surface and declined with increasing depth of burial. The WP of catchweed bedstraw produced two germination peaks per year, whereas the SP and all populations of wild mustard had only one peak. The WP of both weeds germinated earlier than the SP. Seedling emergence for both species in the field was greater for the WP than for the SP. Increasing soil depth reduced seedling emergence of both the WP and SP of wild mustard and affected only the WP of catchweed bedstraw. We conclude that the WP and SP of catchweed bedstraw and wild mustard seeds used in this study differed in seed mass, seasonal germination, and seedling emergence. The ability of a WP to produce large seeds that germinate early and have two germination peaks per year could make these populations a serious problem in cropping systems.


Sign in / Sign up

Export Citation Format

Share Document