scholarly journals Evaluation of crop and irrigation water requirements for some selected crops in Apulia region -Southern Italy

2019 ◽  
Vol 13 (3-4) ◽  
pp. 39-50
Author(s):  
Mohannad Alobid ◽  
István Szűcs

Nowadays, nearly 90% of global water consumption is caused by irrigation activities, and more than 40% of the crops are produced under irrigated conditions. This study is an endeavour to estimate the irrigation water requirement (IWR) and crop water requirement (CWR) for some selected crops (Pepper, Eggplant, Potato, Soybean, Maize, Wheat Melon, Lettuce, Sunflower, Broadbean, Citrus, Cherry, Olive tree, Sugarbeet, Artichoke, Wine Grapes, Carrot...etc.) in Sothern Italy. The selected districts (Sant’ Arcangelo) have been taken as a case study area. Demanded meteorologically (rainfall, temperature, humidity, wind speed, sunshine hours) and crop data (crop coefficient and crop calendar) have been collected for 30 years period from 1981 to 2011. FAO CROPWATv8.0 software has been applied for requisite calculation of CWR and IWR along with the developing of cropping patterns. The FAO Penman-Monteith equation is used for estimating the reference evapotranspiration (ET0) by using meteorological data in the framework of CROPWAT model as it regarded as a good evaluator for a wide variety of climatic conditions. The analysis indicates that FAO Penman-Monteith suits very well for the study area and can be successfully used for the estimation of reference evapotranspiration. The important results in this study indicate that the IWR is very low from November to April (wintertime) due to higher rainfall intensity in these months and from month May to October a considerable amount of water is required for irrigation. JEL Classification: Q25, Q24,Q10

2018 ◽  
Vol 8 (03) ◽  
Author(s):  
Deepika Yadav ◽  
M. K. Awasthi ◽  
R. K. Nema

Improved and efficient irrigation water management through precise estimation of crop water requirement has a vital role to play in ensuring food security. However, the crop water requirement data of field crops are not locally available. In view of this, present investigation was aimed at quantifying the crop water requirement of rabi and kharif season crops grown under paired row planting in different agro climatic conditions of Madhya Pradesh. The crop water requirement was calculated based on the already developed crop coefficient and reference evapotranspiration. Daily weather data of 35 years (1979 to 2013) for twenty districts of Madhya Pradesh was collected to determine the reference evapotranspiration using Aquacrop model. The study revealed that the daily ETo increased continuously from 1st SMW to its maximum values during 21st-22nd SMW, thereafter decreased sharply and remains low from 30th to 34th SMW in all selected districts. The highest value of ETo (11.0 mm day-1) was found in Datia at 21st SMW and lowest in Betul i.e. 2.2 mm day-1 at 32nd SMW. The daily water requirement estimates showed that the water requirement of chickpea, wheat and lentil i.e. 1.73 lpd, 0.70 lpd and 0.49 lpd respectively is highest in Jabalpur. Sugarcane has the highest water requirement 13.56 lpd in Narsinghpur during mid season. In all kharif crops cotton has highest water requirement 6.53 lpd in Harda followed by sesame and groundnut i.e. 2.75 lpd and 2.46 lpd respectively in Datia. These results can be used in efficient management of irrigation water under drip irrigation system in selected district of Madhya Pradesh.


Author(s):  
Javad Gilanipour ◽  
Bahram Gholizadeh

In this paper, Rice water requirement and irrigation water requirement in Amol agro meteorological Station in 2016-2045 are forecasted based on the projected meteorological data of Hadcm3 under A2 scenario. Rice water requirements are estimated by using crop coefficient approach. Reference evapotranspiration are calculated by FAO Penman-Monteith method. Moreover, the irrigation water requirements are simulated by calibrated CROPWAT model using the meteorological parameters. The results show that both crop water requirement and irrigation water requirement present downward trend in the future. In 2016-2045, the rice water requirement and irrigation water requirement decrease by more than 9.9% under A2 scenario, respectively. Furthermore, the precipitation rise may be the main reason for the decrease in crop water requirement, while significant decrease of irrigation water requirement should be attributed to combined action of rising precipitation and a slight increase in temperature.


2019 ◽  
Vol 8 (4) ◽  
pp. 1094-1100

Water scarcity is a serious issue that has to be addressed in order to face the increasing water demands. Due to this issue, agricultural crops do not receive the required amount of water. So, it is necessary to have a proper technique to determine the water requirement for a particular crop. Evapotranspiration (ET), a process which is reliant on numerous climatic conditions, quantifies the loss of water from soil and crops through evaporation and transpiration processes respectively. Reference evapotranspiration ET is a concept of estimating ET from the reference surface which resembles an in-depth surface of green grass of stable height, actively growing, fully shading the surface with sufficient water. The amount of water required for a crop is thus determined by multiplying ETo with the crop coefficient (Kc) which depends on the growth stages and duration of a crop. So, evapotranspiration is considered to be one of the successful approaches to optimize the usage of water for crops. A literature survey is carried out on the popular methods of estimating ETo and their merits, demerits are discussed in this paper. Also, the impact of various climatic factors on ETo is presented. From the survey, it is known that ETo is estimated using conventional and non-conventional methods like Penman-Monteith, Blaney-Criddle, Hargreaves, ANN and WNN, regression and fuzzy logic. Humidity, temperature, wind speed, and solar radiation are the factors that have a major impact on estimating ETo. Generally, conventional methods are tedious since it requires experimental setups and more climatic data to determine ETo which are not available in many under developing countries. Thus, in this case, non-conventional methods are found to yield better results from the survey.


2019 ◽  
Vol 42 ◽  
pp. e42475
Author(s):  
Vivian Dielly da Silva Farias ◽  
Deborah Luciany Pires Costa ◽  
Joao Vitor de Novoa Pinto ◽  
Paulo Jorge Oliveira Ponte de Souza ◽  
Everaldo Barreiro de Souza ◽  
...  

The use of empirical agrometeorological models that can be adjusted to the climatic conditions of different regions has become increasingly necessary to improve water management in grain-producing municipalities. The aim of this work is to examine the correlation between various reference evapotranspiration (ETo) estimation methods and the standard FAO 56 Penman-Monteith method, as well as to determine correction factors, when necessary, for crop-producing municipalities in the northeast of Pará, during both the rainy and dry seasons. We compared simpler methods of ETo estimation to the FAO 56 Penman-Monteith method. For this purpose, meteorological data from Tracuateua, Bragança, Capitão Poço and Castanhal, provided by the National Institute of Meteorology (INMET), were used. The calibration of equations was performed through linear regression. The accuracy of different estimation methods was examined. The Turc, FAO 24 Blaney-Criddle and regression methods presented the best results for all statistical criteria; the Priestley-Taylor, Makkink and FAO 24 Radiation methods presented excellent results after calibration. The methods of Camargo and Hargreaves-Samani produced the worst results for all the criteria.


2020 ◽  
Vol 8 (5) ◽  
pp. 5132-5138

The field study was conducted on Lysimeter by employing the soil water balance method to compute the water requirement and Crop coefficient of Maize in the temperate climatic zone of India. Non-weighing type lysimeters (drainage type) of 2 × 1.5 × 2 m was installed to compute the irrigation requirement, actual crop evapotranspiration (ETc) and actual crop coefficient of maize by water balance method. The water requirement of maize was found 410.4 mm using lysimeter data. The mean daily reference evapotranspiration (ETo) of maize ranged from 0.91 mm/day in the starting growth period to 5.29 mm/day at midseason. The peak ETo of Maize was found 6.3mm/day. The computed crop coefficient (Kc) values of Maize for diffrent crop growth stages were 0.53 for intial, 0.93 for development , 1.05 for mid-season, and 0.78 for late season .A Correlation was also established between Penman-Monteith (P-M) and four other reference Evapotranspiration methods.


2021 ◽  
Vol 8 (03) ◽  
pp. 161-167
Author(s):  
Andi Nur Cahyo

Fulfilling water requirement is one of the important factors for a successful production of rubber tree planting materials. Research on the irrigation requirement for young rubber trees is crucial to determine the amount of water required for an optimum plant growth. The aim of this study was to determine the amount of water needed by one whorl rubber planting material to compensate the amount of evapotranspiration, as well as to estimate the crop coefficient value (kc). The research was conducted at the Indonesian Rubber Research Institute on July 2021. Daily evapotranspiration (ETc) of rubber planting materials of clone “PB 260”, “RRIC 100”, and “IRR 112” planted in polybag size 13 cm x 35 cm were measured by weighing the planting materials daily. Evapotranspiration for the reference crop was collected from the Indonesian Rubber Research Institute climatological station. Our study showed that the amount of water required by each rubber planting material was 92.21 mL per day per polybag when the mean of daily reference evapotranspiration (ETo) was 3.67 mm per day. Therefore, the crop coefficient (kc) of one whorl rubber planting material arranged sparsely was ± 0.32. This kc value can be used as a base to calculate water requirement of one whorl rubber planting material based on the daily reference evapotranspiration (ETo).


2018 ◽  
Vol 50 (1) ◽  
pp. 282-300 ◽  
Author(s):  
Hadi Farzanpour ◽  
Jalal Shiri ◽  
Ali Ashraf Sadraddini ◽  
Slavisa Trajkovic

Abstract Accurate estimation of reference evapotranspiration (ETo) is a major task in hydrology, water resources management, irrigation scheduling and determining crop water requirement. There are many empirical equations suggested by numerous references in literature for calculating ETo using meteorological data. Some such equations have been developed for specific climatic conditions while some have been applied universally. The potential for usage of these equations depends on the availability of necessary meteorological parameters for calculating ETo in different climate conditions. The focus of the present study was a global cross-comparison of 20 ETo estimation equations using daily meteorological records of 10 weather stations (covering a period of 12 years) in a semi-arid region of Iran. Two data management scenarios, namely local and cross-station scenarios, were adopted for calibrating the applied equations against the standard FAO56-PM model. The obtained results revealed that the cross-station calibration might be a good alternative for local calibration of the ETo models when proper similar stations are used for feeding the calibration matrix.


2015 ◽  
Vol 8 (4) ◽  
pp. 1233-1244 ◽  
Author(s):  
S. Multsch ◽  
J.-F. Exbrayat ◽  
M. Kirby ◽  
N. R. Viney ◽  
H.-G. Frede ◽  
...  

Abstract. Irrigation agriculture plays an increasingly important role in food supply. Many evapotranspiration models are used today to estimate the water demand for irrigation. They consider different stages of crop growth by empirical crop coefficients to adapt evapotranspiration throughout the vegetation period. We investigate the importance of the model structural versus model parametric uncertainty for irrigation simulations by considering six evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements for growing wheat in the Murray–Darling Basin, Australia. The study is carried out using the spatial decision support system SPARE:WATER. We find that structural model uncertainty among reference ET is far more important than model parametric uncertainty introduced by crop coefficients. These crop coefficients are used to estimate irrigation water requirement following the single crop coefficient approach. Using the reliability ensemble averaging (REA) technique, we are able to reduce the overall predictive model uncertainty by more than 10%. The exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. an irrigation water limit due to water right of 400 mm, would be less frequently exceeded in case of the REA ensemble average (45%) in comparison to the equally weighted ensemble average (66%). We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.


Author(s):  
Luan B. Giovanelli ◽  
Rubens A. Oliveira ◽  
Jair C. Oliveira-Filho ◽  
Júlio C. M. Baptestini ◽  
Fábio T. Delazari ◽  
...  

ABSTRACT The choice for the most appropriate method to estimate evapotranspiration depends on the availability of meteorological data, required level of precision and cost of equipment acquisition. For this estimate, the Irrigameter is simple to operate, precise and economically viable to farmers. In addition, it collaborates in the application of the necessary water depth to crops, thus avoiding unnecessary energy consumption, environmental degradation, and increasing crop yield and improving crop quality. In this context, the objective of this research was to estimate the reference evapotranspiration using the Irrigameter, for the climatic conditions of the Southern Tocantins state, Brazil. The experimental design was completely randomized with Irrigameters operating with seven water heights in the evaporator, as treatments, with three replicates. The reference evapotranspiration was obtained by FAO-56 Penman-Monteith method. For the analyzed climatic conditions, the water height in the evaporator recommended to estimate the reference evaporation in the spring is 3.4 cm; summer, 4.0 cm; fall, 3.8 cm; and winter, 2.3 cm.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Songhao Shang

Crop water requirement is essential for agricultural water management, which is usually available for crop growing stages. However, crop water requirement values of monthly or weekly scales are more useful for water management. A method was proposed to downscale crop coefficient and water requirement from growing stage to substage scales, which is based on the interpolation of accumulated crop and reference evapotranspiration calculated from their values in growing stages. The proposed method was compared with two straightforward methods, that is, direct interpolation of crop evapotranspiration and crop coefficient by assuming that stage average values occurred in the middle of the stage. These methods were tested with a simulated daily crop evapotranspiration series. Results indicate that the proposed method is more reliable, showing that the downscaled crop evapotranspiration series is very close to the simulated ones.


Sign in / Sign up

Export Citation Format

Share Document