scholarly journals Modern techniques for monitoring wind soil erosion

2020 ◽  
pp. 110-157
Author(s):  
A. Yu. Romanovskaya ◽  
I. Yu. Savin

The article presents a scientific literature review in the field of modern methods of monitoring wind erosion of soils such as: visual indicators of erosion, erosion bridge, close-range photogrammetry, cesium-137 and remote sensing cover. The brief description of each method, advantages and disadvantages, conditions and limitations of their applicability are given. When choosing the method, it is necessary to take into account the monitoring conditions, the area of the territory under consideration and the scale of research, time frames, financial and labor resources. It has been established that the most relevant, economically justified and promising, especially on large territories, are the remote sensing methods, which allow monitoring on different scales, and not only estimating the erosion activity, but also predicting it, thus providing the parties concerned with the necessary information for making right, prompt and timely economic decisions, aimed both at combating wind erosion and elimination of its consequences, and for organizing preventive measures as well. To improve the effectiveness of these methods it is also necessary to create databases, expand and accumulate soil information that can help verify, refine, process and calibrate the satellite data obtained. In order to understand aeolian processes and dust particle transport mechanisms one should create integrated methods that include remote sensing data, meteorological data, on the basis of which the improved models and maps would be developed, and erosion processes would be predicted. The scientific literature is mostly devoted to the interpretation of wind erosion in arid and semi-arid zones. The possibility of satellite monitoring of soil erosion in arable fields remains poorly studied. There are also practically no research results available on the transport of chemicals with micro-particles due to wind erosion. Both in Russia and abroad the attempts are made in soil erosion modelling, but the quality of the models is very limited by the lack of field data required for their calibration and verification. Eroded soils in the country are still identified using ground-based methods. However, field studies can only be conducted in a very limited area, in a few key points, and as a matter of fact it is quite complicated to conduct field studies on actively used agricultural lands.

2015 ◽  
Vol 16 (1-2) ◽  
pp. 102-106
Author(s):  
A. P. Travleyev ◽  
V. A. Gorban

At the present time the great part of soils is exposed to various negative processes. One of the basic processes that lead to the degradation of soils in Ukraine is the erosion. According to the recent data, water and wind erosion covers 13.9 million hectares; it is about 33 % of the total arable land in the country. On this basis, the greater relevance belongs to the scientific studies displaying the features of negative phenomena of our soil, and, most importantly, the ways of solving of these urgent problems on the soil cover of Ukraine. The monograph «Soil erosion in Ukraine: the evolution of theory and practice» of such famous scientists in the field of Soil Erosion Science as Voloshchuk M. D., Petrenko N. I. and Yatsenko S. V. is one of such fundamental works. In the present monograph, considerable attention is paid to the periodization of the formation and development of the doctrine of soil erosion in Ukraine. The authors identify six basic stages of formation of the national Soil Erosion Science. The paper discusses the characteristic features of isolation of Soil Erosion Science as an independent scientific direction and a self-discipline, which are based on the works of such renowned scientists as P. S. Tregubov, M. N. Zaslavsky and G. I. Shvebs. A significant place in the monograph is devoted to the characteristics of the scientific centers of Ukraine, in which the Soil Erosion Science has been developed. These centers are distinguished by leading scientists, under the leadership of whom, the erosion processes have been studied. The authors of the monograph provides four main scientific centers of the country in the field of Soil Erosion Science development: National Scientific Centre «Institute of Agriculture of the National Academy of Agricultural Sciences» (central region), National Scientific Center «Institute for Soil Science and Agrochemistry Research named after O. N. Sokolovsky», Scientific-Technical Center «Fertility» (Kharkiv region), Odessa I. I. Mechnikov National University (south region), Lviv National Agrarian University, Institute of Ecology of the Carpathians of National Academy of Sciences of Ukraine, Ivan Franko National University of Lviv and others (west region). In addition to considering the features of the listed centers, in the work there is a presentation of a brief description of the project, research institutes, agricultural and agroforestry research stations that are active in a scientific work in relation to soil erosion processes. In the work, there are also the historical aspects and mechanisms for the further development of wind erosion researches. Considerable attention the authors of the monograph pay to the analysis of the current state, challenges and prospects of solving the problem on protecting the soil from erosion. The main problem of the country's soil, which is the cause of widespread erosion, is a very high agricultural development of the territory, more than half of which falls onto an arable land. At the end of the monograph, there are a large number of photos, provided by Professor M. D. Voloshchuk, which recorded various aspects of soil erosion manifestations, as well as the ways of its overcoming in the conditions of forest-steppe and steppe zones in Ukraine and on the territory of Moldova. The reviewed monograph is certainly a very relevant and timely generalizing scientific research that will be useful in the theoretical and practical use of students, academic staff of the natural and agricultural higher education institutions, research organizations.


Ensemble ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 145-165
Author(s):  
Tanmoy Sarkar ◽  
◽  
Tapas Pal ◽  

Soil erosion (by water) is a major land degradation process that may threat the Sustainable Development Goals (SDG) by its negative impact on environment and human well-being. Soil erosion research demands scientific methods, tools and techniques to assess soil erosion with more accuracy and reliability. Soil erosion research has had experienced crude field-based techniques in early twentieth century to model-based approaches since the 1970s and very recent machine learning and artificial intelligence models to predict soil erosion susceptibility and risk. The paper aims to review the trend in methodological development in soil erosion by water through time. The brief background of different approaches, their relative advantages and disadvantages are reviewed. Depending on the time of establishment and wide application the approaches are classified and represented as erosion plot/runoff approach, erosion pin technique followed by environmental tracer method and model approach in combination with Remote Sensing (RS) and Geographic Information System (GIS). Recent advancement in artificial intelligence and application of statistical techniques have a great potential to contribute in soil erosion research by identifying various degrees of susceptibility in large scale and also to quantify the erosion rate with high accuracy. The Remote sensing (RS) and Geographic Information System (GIS) contribute to develop regional scale data base with exploration of real time data and spatial analysis. The combination of RS & GIS and process-based models must be more effective than the traditional soil erosion model in the context of prediction with greater reliability and validity. The future research on soil erosion is better to focus on the theoretical analysis and development of erosion prediction model with more quantitative refinement and to model the future.


Author(s):  
Omar El Aroussi

In Morocco, the spectacular expansion of erosive processes shows increasingly alarming aspects. Due to the considerable costs of detailed ground surveys for studying this phenomenon, remote sensing is an appropriate alternative for analyzing and evaluating the risks of the expansion of soil degradation. According to an FAO study (2001), Erosion threatens 13 million ha of cropland and rangeland in northern Morocco and induces an estimated average water storage capacity loss of 50 million m3 each year through dam silting. The lost water volume could potentially be used to irrigate 5000 to 6000 ha / year. This study analyses soil erosion on the Oued El Malleh catchment, a 34 km2 catchment located in the north of Fez (Morocco). This contribution aims at mapping the spatio-temporal evolution of land use and modelling the erosion and sedimentation processes using the well known RUSLE model. Land use changes were assessed using Landsat-5 TM and Landsat-7 ETM+ images, from the 1987-2011 periods which were validated by field studies. The images were first georeferenced and projected into the Moroccan coordinate system (Merchich North) then processed to evaluate soil loss through a GIS package (Idrisi Andes Software). These static assessments of soil loss were then used in a deposition/sedimentation algorithm to model soil loss propagation to the downstream. The soil loss averages determined by the model vary between 1.09 t/ha/yr as a minimum value for the reforested lands and 169.4 t/ha/yr as a maximum value for the uncultivated lands (badlands). The latter generally correspond to Regosols or low protected soils located on steep slopes. In comparison with RUSLE, the sedimentation model yields lower values of soil losses; only 97.3 t/h/year for the uncultivated lands, and -0.34 t/ha/year in the reforested land, indicating an on-going sedimentation process. By taking into account the temporal variability of erosion and deposition jointly lower values of soil erosion are calculated by the RUSLE model. However, despite this decline, land degradation problems are still important due to the combination of land use and local lithology. The results of this study were used to indentify areas where interventions are needed to limit land degradation processes.


2021 ◽  
Vol 24 (1) ◽  
pp. 56-62
Author(s):  
Lenka Lackóová ◽  
Jana Kozlovsky Dufková

Abstract Soil erosion by wind is the primary land degradation process which affects natural environments and agricultural lands. In agricultural lands, soil erosion by wind mainly results from removing of the finest and most biologically active part of the soil richest in organic matter and nutrients. Repeated exposure to wind erosion can have permanent effects on agricultural soil degradation. Knowing spatial and temporal changes in soil conditions and soil erodibility is essential to understand wind erosion processes. There are many methodologies to predict the susceptibility of landscape to erosion. The more complex is the scheme combining multiple factors, the more accurate the estimate is. There are very few studies on mapping the changes in soil grain size and erodible fraction due to wind erosion. Existing studies only deal with eroded soil units (where particles are removed – deflation) and not the eroded units (areas) to which the eroded particles are wound – accumulated. Prevailing wind direction should also be taken into account when mapping changes in erodible fractions of wind-eroded soils and the nature of the soil (whether soil particles accumulate or deflate). In this study the “historical“ grain size distribution of the soil in three cadastral areas using data from complex soil survey (1968) and year 2018/2019 was analysed. Erodible fraction change was also calculated and compared for both time periods.


2020 ◽  
pp. 67-97
Author(s):  
Ibrahim Darwish

The variation Wind erosion of soil from place to another, cause the variation of variables affecting its activity, and the research aims to quantify the variables of wind erosion soil in governorate of Taiz, to reveal effect of each of them on wind erosion in governorate, was followed by revealing effect of all these spatial variables combined on wind erosion. , By building model by which all these variables were Merge according their weights. The research methodology was to collect data on each spatial variable related to wind erosion of soil, And processing this data, and deriving the informational layers for each spatial variable using a number of mathematical algorithms in the raster calculator for Arc Map 10.5, Highlighting effect of each spatial variable separately on wind erosion activity in governorate, In preparation for integrating all these spatial variables together by means of a model that shows suitability of soil for wind erosion in governorate according to the impact of all these spatial variables. The results of research found that area of district that was Described a high suitability for wind erosion is 4129.2 km2, or 41.22%, and the area of district that was Described moderate suitability for wind erosion is 2267.4 km2, or 22.63%, and area of district that was Described low suitability for wind erosion 2267.4 km2, or 22.63%, and the area of district that was Described by strong suitability for wind erosion is 461.9 km2, or 4.61%, and the area of district that was Described poorly suitability for wind erosion 275.2 km2, or 2.74% of total area governorate.


Purpose. To reveal changes of climatic conditions in the region of Zaporizhia, which directly affect the development of soil erosion processes of the region Methods. System analysis. Results. It has been established that the process of climate warming is accompanied with an increase in average annual temperatures during the period of 2005-2017 by 1.7 ° С on the average. The general positive trend also indicates a significant increase in the sum of active temperatures above + 15 ° С. The average long-term increase in the sum of positive temperatures has been around 40 ° C per year according to the data of the meteorological observing station of Melitopol; at the same time, within the period of 2008-2012 there was a double growth of this indicator - up to 80 ° C per year. The change of wind circulation with the prevalence of western component leads to an overall increase in precipitation up to 500.0 mm on the average (the meteorological station of Melitopol). At the same time, the amount of rainfall is being redistributed towards the winter season, which causes an increase in dryness during the vegetation season. Both the increase in the average annual temperature and the redistribution of precipitation between seasons is accompanied with an increase in the frequency of droughts, especially from the second half of the twentieth century until the present time. In addition, an increase in the amount of rainfall in the winter period and the exposure of agricultural fields is followed with accelerated water erosion of the soil, with the deflation processes being activated in early spring. Conclusions. It has been revealed that changes in the climatic conditions, which are occurring on the territory of the region of Zaporizhia, are accompanied with an average long-term increase in the sum of positive temperatures, an increase in the average annual temperature of the air and a decrease in the wind-circulatory processes.The change in climatic conditions has caused the activation of water and wind erosion. Wind erosion is common on the surface adjacent to the Azov Sea coast, as well as on the surface of the Pryazovia Highlands and windward slopes. Water erosion processes are confined to short and steep slopes, which essentially depend on the amount of precipitation and soil properties.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1948 ◽  
Author(s):  
Mahrooz Rezaei ◽  
Abdolmajid Sameni ◽  
Seyed Rashid Fallah Shamsi ◽  
Harm Bartholomeus

Wind erosion is a complex process influenced by different factors. Most of these factors are stable over time, but land use/cover and land management practices are changing gradually. Therefore, this research investigates the impact of changing land use/cover and land management on wind erosion potential in southern Iran. We used remote sensing data (Landsat ETM+ and Landsat 8 imagery of 2004 and 2013) for land use/cover mapping and employed the Iran Research Institute of Forest and Rangeland (IRIFR) method to estimate changes in wind erosion potential. For an optimal mapping, the performance of different classification algorithms and input layers was tested. The amount of changes in wind erosion and land use/cover were quantified using cross-tabulation between the two years. To discriminate land use/cover related to wind erosion, the best results were obtained by combining the original spectral bands with synthetic bands and using Maximum Likelihood classification algorithm (Kappa Coefficient of 0.8 and 0.9 for Landsat ETM+ and Landsat 8, respectively). The IRIFR modelling results indicate that the wind erosion potential has increased over the last decade. The areas with a very high sediment yield potential have increased, whereas the areas with a low, medium, and high sediment yield potential decreased. The area with a very low sediment yield potential have remained constant. When comparing the change in erosion potential with land use/cover change, it is evident that soil erosion potential has increased mostly in accordance with the increase of the area of agricultural practices. The conversion of rangeland to agricultural land was a major land-use change which lead to more agricultural practices and associated soil loss. Moreover, results indicate an increase in sandification in the study area which is also a clear evidence of increasing in soil erosion.


2017 ◽  
Vol 10 ◽  
pp. 34-41 ◽  
Author(s):  
V.I. Lyalko ◽  
◽  
L.A. Elistratova ◽  
A.A. Apostolov ◽  
V.M. Chekhniy ◽  
...  

Author(s):  
Hleb S. Lazovik ◽  
Antonina A. Topaz

The article presents a method for creating a territory erosion hazard integrated map using RUSLE integral model, Earth remote sensing data and GIS technologies. The studies carried out on this topic are presented, the analysis of which has shown a more active use of integral indicators of water-erosion processes in foreign scientific works. Urgency of updating methodology for studying erosion processes has been substantiated. Theoretical foundations of the application of integral models of soil erosion are given, the application of the RUSLE model is substantiated, and the optimal way of using this model is proposed. The research methodology has been developed, consisting of primary processing of remote sensing data, calculation of the factors of erosion development and creation of a territory erosion hazard integrated map. Based on the processing of aerial photography materials, a point cloud, a digital elevation model and an orthomosaic map of the study area were created. The results of the geoinformation analysis of the remote sensing data, which included calculation of the soil erodibility factor and the topographic factor, are presented. Based on the integral indicator of watererosion hazard, a complex map of the erosion hazard of the territory has been created. Main patterns of geographical distribution of the values of the integral indicator of the water-erosion hazard of the territory are revealed, devised methodology is assessed. It was found that the schematic map reflects the general pattern of water erosion processes: they are more active in places where more dissected relief is spread. Influence of the soil factor on the pattern of the schematic map is shown: the pattern in the territories occupied by sod-podzolic loamy soils qualitatively differs from the pattern on the lands where sod-podzolic sandy loam soils are widespread. Patterns on the schematic map of different parts of the developed linear forms of relief, formed by temporary streams, are described. It is shown that the proposed method can be used to assess the water-erosion hazard of the territory. The need to take into account a larger number of factors and to refine the assessment of existing ones is concluded.


Sign in / Sign up

Export Citation Format

Share Document