scholarly journals Effect of Low Dose Type I Fish Collagen Peptides Combined or not with Silicon on Skin Aging Signs in Mature Women

2018 ◽  
Vol 6 (4) ◽  
Author(s):  
Luc Duteil
Author(s):  
L. Duteil ◽  
C. Queille-Roussel ◽  
Y. Maubert ◽  
J. Esdaile ◽  
C. Bruno-Bonnet ◽  
...  

Objective: To assess the anti-aging potential of three type I fish collagen hydrolysates (CH1=Naticol® BPMG, CH2=Naticol® HPMG, CH3=Naticol® 1000MG) on skin aging signs for three different body sites of mature women. Design: Double-blind, randomized and Placebo-controlled clinical study. Setting: Centre of Clinical Pharmacology Applied to Dermatology (CPCAD, Nice). Participants: Sixty women aged 46-69 years having skin aging signs on the face. Intervention: Participants were randomized to receive a once daily 5g dose of one of the CHs or Placebo for 8 weeks. Measurements: Skin biomechanics, skin hydration and visual assessment of the crow’s-feet wrinkles were evaluated after 4 and 8 weeks of treatment. Subject satisfaction questionnaire and Investigator global efficacy appreciation (IGEA) were also used. Results: Skin biomechanics indicated a significant improvement of skin firmness for the three CHs compared to Placebo, in particular for CH2. An increase of overall skin elasticity for CH3 (p = 0.017) and CH2 (p = 0.044) on the abdomen was also observed. This was corroborated by the significant decrease of the crow’s-feet wrinkle score at week 8 for both CH3 and CH2 (p=0.023 and p=0.014, respectively). Concerning the self-questionnaire, overall the number of positive responses was significantly higher for CH2 compared to Placebo and other CHs. For the IGEA, the number of favorable answers was greater for CH2 than for the Placebo group (80% vs. 36%, p= 0.025). A positive influence of CH treatments could be observed for skin hydration but failed to reach statistical significance. Conclusion: The tested type I fish collagen hydrolysates have beneficial effects on skin quality. In particular, CH2 demonstrated the greatest range of these effects including improvement of skin biomechanics, decrease of wrinkles, good subject satisfaction and no related adverse events.


1982 ◽  
Vol 92 (1) ◽  
pp. 227-230 ◽  
Author(s):  
J D Malone ◽  
S L Teitelbaum ◽  
G L Griffin ◽  
R M Senior ◽  
A J Kahn

The osteoclast, the multinucleated giant cell of bone, is derived from circulating blood cells, most likely monocytes. Evidence has accrued that is consistent with the hypothesis that the recruitment of monocytes for osteoclast development occurs by chemotaxis. In the present study, we have examined the chemotactic response of human peripheral blood monocytes and related polymorphonuclear leucocytes to three constituents of bone matrix: peptides from Type I collagen, alpha 2-HS glycoprotein, and osteocalcin (bone gla protein). The latter two substances are among the major noncollagenous proteins of bone and are uniquely associated with calcified connective tissue. In chemotaxis assays using modified Boyden chambers, Type I collagen peptides, alpha 2HS glycoprotein, and osteocalcin evoke a dose-dependent chemotactic response in human monocytes. No chemotaxis is observed on PMNs despite their ontogenetic relationship to monocytes and their documented sensitivity to a broad range of other chemical substances. Our observations are consistent with the view that osteoclast precursors (monocytes) are mobilized by chemotaxis, and suggest that the chemoattractants responsible for this activity are derived from the bone matrix or, in the case of collagen and osteocalcin; directly from the osteoblasts which produce them.


1995 ◽  
Vol 89 (1) ◽  
pp. 69-73 ◽  
Author(s):  
Andrew E. Pocock ◽  
Martin J. O. Francis ◽  
Roger Smith

1. Skin fibroblast lines were cultured from nine patients who had the features of idiopathic juvenile osteoporosis, six relatives, five unrelated control subjects and three unrelated patients with osteogenesis imperfecta type I. Some patients with idiopathic juvenile osteoporosis were adults whose previous osteoporosis was in remission. Two patients with idiopathic juvenile osteoporosis were siblings and one patient with idiopathic juvenile osteoporosis had a daughter with severe osteogenesis imperfecta (type III). 2. The ratio of type III to type I collagen, synthesized by fibroblasts, was increased in two of the patients with osteogenesis imperfecta type I and in the daughter with osteogenesis imperfecta type III, but was normal in all the other patients with idiopathic juvenile osteoporosis and the other relatives. 3. Radiolabelled collagen was digested by cyanogen bromide and separated on SDS-PAGE. Unreduced collagen peptides migrated normally, except those from both the two siblings with idiopathic juvenile osteoporosis. In these two lines, abnormal migration suggested the presence of collagen I mutations. 4. The secretion of synthesized collagen by these two idiopathic juvenile osteoporosis lines and two others was reduced to only 43–45% as compared with a line from a 13-year-old control subject, which was defined as 100%. The three osteogenesis imperfecta type I lines secreted 18–37%, the other five idiopathic juvenile osteoporosis lines secreted 57–75%, the relatives (including the daughter with severe osteogenesis imperfecta) secreted 49–115% and the controls secreted 69–102%. 5. We conclude that qualitative abnormalities of type I collagen associated with a reduction in total secreted collagen synthesis may occur in a minority of patients with idiopathic juvenile osteoporosis; these patients could represent a subset of patients with this disorder.


Nutrients ◽  
2017 ◽  
Vol 9 (11) ◽  
pp. 1209 ◽  
Author(s):  
Hongdong Song ◽  
Siqi Zhang ◽  
Ling Zhang ◽  
Bo Li

2020 ◽  
Vol 21 (22) ◽  
pp. 8439
Author(s):  
Kyung-Eun Lee ◽  
Sugyeong Jeong ◽  
Seok Kyun Yun ◽  
Seoyeon Kyung ◽  
Abadie Sophie ◽  
...  

In recent years, a number of active materials have been developed to provide anti-aging benefits for skin and, among them, peptides have been considered the most promising candidate due to their remarkable and long-lasting anti-wrinkle activity. Recent studies have begun to elucidate the relationship between the secretion of emotion-related hormones and skin aging. Kisspeptin, a neuropeptide encoded by the KISS1 gene, has gained attention in reproductive endocrinology since it stimulates the reproductive axis in the hypothalamus; however, the effects of Kisspeptin on skin have not been studied yet. In this study, we synthesized Kisspeptin-10 and Kisspeptin-E, which are biologically active fragments, to mimic the action of Kisspeptin. Next, we demonstrated the anti-aging effects of the Kisspeptin-mimicking fragments using UV-induced skin aging models, such as UV-induced human dermal fibroblasts (Hs68) and human skin explants. Kisspeptin-E suppressed UV-induced 11 beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) stimulation leading to a regulation of skin aging related genes, including type I procollagen, matrix metalloproteinases-1 (MMP-1), interleukin-6 (IL-6), and IL-8, and rescued the skin integrity. Taken together, these results suggest that Kisspeptin-E could be useful to improve UV-induced skin aging by modulating expression of stress related genes, such as 11β-HSD1.


2003 ◽  
Vol 69 (1) ◽  
pp. 162-169 ◽  
Author(s):  
Naoki Tsuruoka ◽  
Toru Nakayama ◽  
Masako Ashida ◽  
Hisashi Hemmi ◽  
Masahiro Nakao ◽  
...  

ABSTRACT Enzymatic degradation of collagen produces peptides, the collagen peptides, which show a variety of bioactivities of industrial interest. Alicyclobacillus sendaiensis strain NTAP-1, a slightly thermophilic, acidophilic bacterium, extracellularly produces a novel thermostable collagenolytic activity, which exhibits its optimum at the acidic region (pH 3.9) and is potentially applicable to the efficient production of such peptides. Here, we describe the purification to homogeneity, characterization, gene cloning, and heterologous expression of this enzyme, which we call ScpA. Purified ScpA is a monomeric, pepstatin-insensitive carboxyl proteinase with a molecular mass of 37 kDa which exhibited the highest reactivity toward collagen (type I, from a bovine Achilles tendon) among the macromolecular substrates examined. On the basis of the sequences of the peptides obtained by digestion of collagen with ScpA, the following synthetic peptides were designed as substrates for ScpA and kinetically analyzed: Phe-Gly-Pro-Ala*Gly-Pro-Ile-Gly (k cat, 5.41 s−1; Km , 32 μM) and Met-Gly-Pro-Arg*Gly-Phe-Pro-Gly-Ser (k cat, 351 s−1; Km , 214 μM), where the asterisks denote the scissile bonds. The cloned scpA gene encoded a protein of 553 amino acids with a calculated molecular mass of 57,167 Da. Heterologous expression of the scpA gene in the Escherichia coli cells yielded a mature 37-kDa species after a two-step proteolytic cleavage of the precursor protein. Sequencing of the scpA gene revealed that ScpA was a collagenolytic member of the serine-carboxyl proteinase family (the S53 family according to the MEROPS database), which is a recently identified proteinase family on the basis of crystallography results. Unexpectedly, ScpA was highly similar to a member of this family, kumamolysin, whose specificity toward macromolecular substrates has not been defined.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Hairong Zhong ◽  
Choyoung Hong ◽  
Zhouxin Han ◽  
Seung Jin Hwang ◽  
Byunghyun Kim ◽  
...  

In oriental medicine, mixtures of medical plants are always used as prescriptions for diseases. Natural products extracted from herbs have great potential antiaging effects. Previous studies and clinical trials have shown several critical functions of Erjingwan (EJW), such as nourishing Yin, kidney tonifying and aging-resistance. We assumed that EJW extracts exerted the antiaging effects through nourishing Yin. We examined the antiaging effects of EJW extracts on healthy human skin by noninvasive measurements. Then we estimated the cell proliferation and DPPH radical scavenging rate. Western blotting analysis was used to determine the expressions of matrix metalloproteinase-1 (MMP-1), type I collagen (COL1A2), p-NF-κB, NF-κB, p-IκBα, IκBα, p-Nrf2, and HO-1. EJW extracts did not affect moisture content, TEWL and skin chroma, while it significantly improved skin glossiness and skin elasticity. Moreover, EJW extracts could downregulate the MMP1 expression and upregulate the COL1A2 expression. In addition, it promoted the Nrf2 pathway while it inhibited the NF-κB pathway. With the application of cream containing EJW extracts, the skin aging state was significantly improved. Furthermore, in vitro studies showed that EJW extracts contributed to the repair of skin after injury. Taken together, the antiaging effects of EJW extracts were related to its antioxidant and anti-inflammatory abilities.


2008 ◽  
Vol 68 (2) ◽  
pp. 257-263 ◽  
Author(s):  
M Corr ◽  
D L Boyle ◽  
L Ronacher ◽  
N Flores ◽  
G S Firestein

Objectives:The IκB kinase (IKK)-related kinase IKKϵ regulates type I interferon expression and responses as well as proinflammatory mediator production. We examined the role of IKKϵ in arthritis and its ability to enhance the therapeutic response to systemic interferon (IFN) β therapy in passive murine K/BxN arthritis.Methods:IKKϵ–/–, IFNα∼βR–/– and wild type mice were given K/BxN serum and treated with polyinosinic polycytidylic acid (poly(I:C)), IFNβ, or normal saline. Clinical response and histological scores were assessed. Gene expression in the paws was measured by quantitative PCR. Serum interleukin 1a receptor agonist (IL1Ra) and IL10 were measured by ELISA and multiplex bead array.Results:Arthritis was almost completely blocked in wild type mice if arthritogenic K/BxN serum and the Toll-like receptor (TLR)3 ligand, poly(I:C), were coadministered at the onset of the model, but not in established disease. Mice deficient in IFNα∼βR had an accelerated course of arthritis, and did not respond to poly(I:C). IKKϵ null mice had a modest decrease in clinical arthritis compared with heterozygous mice. Low doses of IFNβ that were ineffective in wild type mice significantly decreased clinical arthritis in IKKϵ null mice. Articular chemokine gene expression was reduced in the IKKϵ–/– mice with arthritis and secreted IL1Ra (sIL1Ra) mRNA was significantly increased. Serum levels of IL1Ra were increased in low dose IFNβ-treated IKKϵ–/– mice.Conclusions:Subtherapeutic doses of IFNβ enhance the anti-inflammatory effects of IKKϵ deficiency, possibly by increasing production of IL1Ra and unmasking the antichemokine effects. Combination therapy with low dose IFNβ and an IKKϵ inhibitor might improve efficacy of either agent alone and offers a novel approach to RA.


Sign in / Sign up

Export Citation Format

Share Document