scholarly journals Are Livestock Always Bad for the Planet? Rethinking the Protein Transition and Climate Change Debate

2021 ◽  
Author(s):  
Ella Houzer ◽  
Ian Scoones

Urgent climate challenges have triggered calls for radical, widespread changes in what we eat, pushing for the drastic reduction if not elimination of animal-source foods from our diets. But high-profile debates, based on patchy evidence, are failing to differentiate between varied landscapes, environments and production methods. Relatively low-impact, extensive livestock production, such as pastoralism, is being lumped in with industrial systems in the conversation about the future of food. This report warns that the dominant picture of livestock’s impacts on climate change has been distorted by faulty assumptions that focus on intensive, industrial farming in rich countries. Millions of people worldwide who depend on extensive livestock production, with relatively lower climate impacts, are being ignored by debates on the future of food. The report identifies ten flaws in the way that livestock’s climate impacts have been assessed, and suggests how pastoralists could be better included in future debates about food and the climate.

Author(s):  
Guillaume Rohat ◽  
Stéphane Goyette ◽  
Johannes Flacke

Purpose Climate analogues have been extensively used in ecological studies to assess the shift of ecoregions due to climate change and the associated impacts on species survival and displacement, but they have hardly been applied to urban areas and their climate shift. This paper aims to use climate analogues to characterize the climate shift of cities and to explore its implications as well as potential applications of this approach. Design/methodology/approach The authors propose a methodology to match the current climate of cities with the future climate of other locations and to characterize cities’ climate shift velocity. Employing a sample of 90 European cities, the authors demonstrate the applicability of this method and characterize their climate shift from 1951 to 2100. Findings Results show that cities’ climate shift follows rather strictly north-to-south transects over the European continent and that the average southward velocity is expected to double throughout the twenty-first century. These rapid shifts will have direct implications for urban infrastructure, risk management and public health services. Originality/value These findings appear to be potentially useful for raising awareness of stakeholders and urban dwellers about the pace, magnitude and dynamics of climate change, supporting identification of the future climate impacts and vulnerabilities and implementation of readily available adaptation options, and strengthening cities’ cooperation within climate-related networks.


2020 ◽  
Author(s):  
Claudia Gabriela Mayorga Adame ◽  
James Harle ◽  
Jason Holt ◽  
Artioli Yuri ◽  
Sarah Wakelin

<p>Climate change is expected to cause important changes in ocean physics, which will in turn have important effects on the marine ecosystems. The ReCICLE project (<strong>Resolving Climate Impacts on shelf and CoastaL seas Ecosystems</strong>) aims to identify and quantify the envelope of response to climate change of lower trophic level shelf-sea ecosystems and their functional interactions, in order to assess the vulnerability of ecosystem goods and services in the UK shelf seas. The central tool for this work is an ensemble of coupled hydrodynamic-biogeochemical ecosystem models NEMO-ERSEM Atlantic Margin Model configuration at 7 km horizontal resolution (AMM7), forced by different CIMP5 global climate change models to generate downscaled scenarios for future decades.</p><p>Changes in connectivity patterns are expected to affect coastal populations of marine organisms in shelf seas. Holt et al 2018 (GRL https://doi.org/10.1029/2018GL078878) showed the potential for radical reorganization of the North Sea circulation in earlier simulations. To assess this particular issue particle tracking experiments are carried out during two 10 year time slices, in the recent past (2000-2010) and in the future (2040-2050) in ensemble members of the ReCICLE AMM7 regional downscaling showing contrasting circulation patterns. Surface particles were uniformly seeded in the UK shelf seas every month and tracked for 30 days. The resulting particle trajectories are analysed with cluster analysis technics aiming to determine if persistent oceanographic boundaries re-arrange in the future climate scenarios. The ecological effects of circulation and water masses changes in the future ocean are discussed from a Lagrangian perspective.</p><p> </p>


Subject Drought and agriculture. Significance In the last three months, emergency decrees prompted by lack of water have been issued in more than one-third of the country’s 16 regions as a result of the ten-year drought, which has worsened in 2019. The emergency decrees are focused on ensuring access to drinking water for people in rural areas, providing fodder and water for livestock, and implementing irrigation projects for small and medium-sized farms. Impacts Hydropower represents about 30% of Chile’s energy matrix but there is sufficient backup from other sources to avoid outages. The drought has raised public awareness on the future impacts of climate change on Chile. A warmer and drier future may lead to migration to the country’s south in the longer term.


2021 ◽  
Vol 8 (6) ◽  
pp. 201669
Author(s):  
Thibaut Putelat ◽  
Andrew P. Whitmore ◽  
Nimai Senapati ◽  
Mikhail A. Semenov

Under future CMIP5 climate change scenarios for 2050, an increase in wheat yield of about 10% is predicted in Great Britain (GB) as a result of the combined effect of CO 2 fertilization and a shift in phenology. Compared to the present day, crops escape increases in the climate impacts of drought and heat stresses on grain yield by developing before these stresses can occur. In the future, yield losses from water stress over a growing season will remain about the same across Great Britain with losses reaching around 20% of potential yield, while losses from drought around flowering will decrease and account for about 9% of water limited yield. Yield losses from heat stress around flowering will remain negligible in the future. These conclusions are drawn from a modelling study based on the response of the Sirius wheat simulation model to local-scale 2050-climate scenarios derived from 19 Global Climate Models from the CMIP5 ensemble at 25 locations representing current or potential wheat-growing areas in GB. However, depending on susceptibility to water stress, substantial interannual yield variation between locations is predicted, in some cases suggesting low wheat yield stability. For this reason, local-scale studies should be performed to evaluate uncertainties in yield prediction related to future weather patterns.


Author(s):  
Saeed Nosratabadi ◽  
Sina Ardabili ◽  
Zoltan Lakner ◽  
Csaba Mako ◽  
Amir Mosavi

Advancing models for accurate estimation of food production is essential for policymaking and managing national plans of action for food security. This research proposes two machine learning models for the prediction of food production. The adaptive network-based fuzzy inference system (ANFIS) and multilayer perceptron (MLP) methods are used to advance the prediction models. In the present study, two variables of livestock production and agricultural production were considered as the source of food production. Three variables were used to evaluate livestock production, namely livestock yield, live animals, and animal slaughtered, and two variables were used to assess agricultural production, namely agricultural production yields and losses. Iran was selected as the case study of the current study. Therefore, time-series data related to livestock and agricultural productions in Iran from 1961 to 2017 have been collected from the FAOSTAT database. First, 70% of this data was used to train ANFIS and MLP, and the remaining 30% of the data was used to test the models. The results disclosed that the ANFIS model with Generalized bell-shaped (Gbell) built-in membership functions has the lowest error level in predicting food production. The findings of this study provide a suitable tool for policymakers who can use this model and predict the future of food production to provide a proper plan for the future of food security and food supply for the next generations.


2021 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Sina Ardabili ◽  
Zoltan Lakner ◽  
Csaba Mako ◽  
Amir Mosavi

Abstract Advancing models for accurate estimation of food production is essential for policymaking and managing national plans of action for food security. This research proposes two machine learning models for the prediction of food production. The adaptive network-based fuzzy inference system (ANFIS) and multilayer perceptron (MLP) methods are used to advance the prediction models. In the present study, two variables of livestock production and agricultural production were considered as the source of food production. Three variables were used to evaluate livestock production, namely livestock yield, live animals, and animal slaughtered, and two variables were used to assess agricultural production, namely agricultural production yields and losses. Iran was selected as the case study of the current study. Therefore, time-series data related to livestock and agricultural productions in Iran from 1961 to 2017 have been collected from the FAOSTAT database. First, 70% of this data was used to train ANFIS and MLP, and the remaining 30% of the data was used to test the models. The results disclosed that the ANFIS model with Generalized bell-shaped (Gbell) built-in membership functions has the lowest error level in predicting food production. The findings of this study provide a suitable tool for policymakers who can use this model and predict the future of food production to provide a proper plan for the future of food security and food supply for the next generations.


2013 ◽  
Vol 280 (1771) ◽  
pp. 20132025 ◽  
Author(s):  
D. M. Broom ◽  
F. A. Galindo ◽  
E. Murgueitio

What is the future for livestock agriculture in the world? Consumers have concerns about sustainability but many widely used livestock production methods do not satisfy consumers' requirements for a sustainable system. However, production can be sustainable, occurring in environments that: supply the needs of the animals resulting in good welfare, allow coexistence with a wide diversity of organisms native to the area, minimize carbon footprint and provide a fair lifestyle for the people working there. Conservation need not just involve tiny islands of natural vegetation in a barren world of agriculture, as there can be great increases in biodiversity in farmed areas. Herbivores, especially ruminants that consume materials inedible by humans, are important for human food in the future. However, their diet should not be just ground-level plants. Silvopastoral systems, pastures with shrubs and trees as well as herbage, are described which are normally more productive than pasture alone. When compared with widely used livestock production systems, silvopastoral systems can provide efficient feed conversion, higher biodiversity, enhanced connectivity between habitat patches and better animal welfare, so they can replace existing systems in many parts of the world and should be further developed.


Author(s):  
Guillaume Duteurtre ◽  
Mohamed Habibou Assouma ◽  
René Poccard-Chapuis ◽  
Patrice Dumas ◽  
Ibra Touré ◽  
...  

2018 ◽  
Author(s):  
Jean-Francois Bastin ◽  
Emily Clark ◽  
Thomas Elliott ◽  
Simon Hart ◽  
Johan van den Hoogen ◽  
...  

AbstractCombating against climate change requires unified action across all sectors of society. However, this collective action is precluded by the ‘consensus gap’ between scientific knowledge and public opinion. A growing body of evidence suggests that facts do not persuade people to act. Instead, it is visualization - the ability to simulate relatable scenarios - is the most effective approach for motivating behavior change. Here, we exemplify this approach, using current climate projections to enable people to visualize cities of the future, rather than describing intangible climate variables. Analyzing city pairs for 520 major cities of the world, we characterize which cities will most closely resemble the climate conditions of which other major cities by 2050. On average, most cities will resemble cities that are over 1000km south, and 22% of cities will experience climate conditions that are not currently experienced by any existing major cities. We predict that London’s climate in 2050 will resemble Barcelona’s climate today, Madrid will resemble to Marrakesh, Moscow to Sofia, Seattle to San Francisco, Stockholm to Budapest, Tokyo to Changsha, etc. Our approach illustrates how complex climate data can be packaged to provide tangible information. By allowing people to visualize their own climate futures, we hope to empower citizens, policy makers and scientists to visualize expected climate impacts and adapt decision making accordingly.


Sign in / Sign up

Export Citation Format

Share Document