scholarly journals Cities of the future, visualizing climate change to inspire actions

2018 ◽  
Author(s):  
Jean-Francois Bastin ◽  
Emily Clark ◽  
Thomas Elliott ◽  
Simon Hart ◽  
Johan van den Hoogen ◽  
...  

AbstractCombating against climate change requires unified action across all sectors of society. However, this collective action is precluded by the ‘consensus gap’ between scientific knowledge and public opinion. A growing body of evidence suggests that facts do not persuade people to act. Instead, it is visualization - the ability to simulate relatable scenarios - is the most effective approach for motivating behavior change. Here, we exemplify this approach, using current climate projections to enable people to visualize cities of the future, rather than describing intangible climate variables. Analyzing city pairs for 520 major cities of the world, we characterize which cities will most closely resemble the climate conditions of which other major cities by 2050. On average, most cities will resemble cities that are over 1000km south, and 22% of cities will experience climate conditions that are not currently experienced by any existing major cities. We predict that London’s climate in 2050 will resemble Barcelona’s climate today, Madrid will resemble to Marrakesh, Moscow to Sofia, Seattle to San Francisco, Stockholm to Budapest, Tokyo to Changsha, etc. Our approach illustrates how complex climate data can be packaged to provide tangible information. By allowing people to visualize their own climate futures, we hope to empower citizens, policy makers and scientists to visualize expected climate impacts and adapt decision making accordingly.

2021 ◽  
Author(s):  
Aleksi Salla ◽  
Heidi Salo ◽  
Harri Koivusalo

<p>Climate change is projected to result in higher temperatures, higher annual precipitation and more uneven distribution of precipitation in the northern regions. This requires adaptation in agriculture where both excessively wet and dry cycles pose challenges to cropping. Until now, water management in northern agricultural fields has been resting primarily on efficient drainage, but interest towards more flexible measures has increased.</p><p>This study focuses on the hydrological effects of climate change and controlled drainage operated with subsurface drains and an open collector ditch in an agricultural field. The objective was to computationally estimate how groundwater levels and water balance respond to controlled drainage and open ditch scenarios in climate conditions projected to take place in Finland during this century. A hydrological model FLUSH was used to simulate the hydrology of an experimental field in Sievi, Northern Ostrobothnia, Finland during years 1970–2100. Down-scaled climate projections from EURO-CORDEX (RCP 8.5 and RCP 2.6) were used as meteorological input. The temporal development of the field hydrology and the effects of controlled drainage were examined by dividing the time series into four subsequent time intervals (historical period and three future periods).</p><p>Two different control scenarios were studied. Drainage intensity was reduced during growing seasons in summers (Jun.–Aug.) and either in autumn (Oct.–Nov.) or from autumn to spring (Oct.–Mar.). During these periods, groundwater table was on average 17–29 cm, 28–30 cm and 36–40 cm higher, respectively, in the control scenarios when compared to conventional subsurface drainage in different study intervals and emission scenarios. The implementation of controlled drainage reduced annual drain discharge by 21–46 mm. The projected temporal evolution of the effects of controlled drainage on groundwater levels and annual drain discharges were not monotonous, but the projected effects were larger during the future periods when compared to the historical period. Controlled drainage effect on groundwater levels was seen during both dry and wet years. Controlled drainage was assessed to be an effective method to control field water processes currently and in the future decades. The open collector ditch lowered groundwater levels within a distance of 115 m from the ditch.</p>


2014 ◽  
Vol 17 (2) ◽  
pp. 108-122
Author(s):  
Khoi Nguyen Dao ◽  
Nhung Thi Hong Nguyen ◽  
Canh Thanh Truong

There are statistical downscaling methods such as: SDSM, LARS-WG, WGEN…, used to convert information on climate variables from the simulation results of General Circulation Model (GCM) to build climate change scenarios for local region. In this study, we used the LARS-WG model and HadCM3 GCM for two emission scenarios: B1 (low emission scenario) and A1B (medium emission scenario) to generate future scenarios for temperature and precipitation at meteorological stations and rain gauges in the Srepok watershed. The LARS-WG model was calibrated and validated against observed climate data for the period 1980-2009, and the calibrated LARS-WG was then used to generate future climate variables for the 2020s (2011-2030), 2055s (2046-2065), and 2090s (2080-2099). The climate change scenarios suggested that the climate in the study area will become warmer and drier in the future. The results obtained in this study could be useful for policy makers in planning climate change adaptation strategies for the study area.


2020 ◽  
Author(s):  
Koen De Ridder ◽  
Filip Lefebre ◽  
Eline Vanuytrecht ◽  
Julie Berckmans ◽  
Hendrik Wouters

<p>Biodiversity is increasingly under pressure from climate change, which affects the habitat suitability for species as well as the efficiency of ecosystem services. Management of these issues, for instance through ecosystem restoration or species dispersal measures, is often hindered by a lack of appropriate information about (future) climate conditions.  To address this, an operational Sectoral Information System (SIS) for the Biodiversity sector (SIS Biodiversity) is designed within the Copernicus programme Climate Change Service (C3S). This new SIS provides tailored bio-climatic indicators and applications, and delivers novel evidence regarding impacts of past, present and future climate. As such, it provides support to decision making challenges that are currently facing unmet climate data needs.<br> <br>The new climate service for SIS Biodiversity will be demonstrated, including the outline, workflow and outcomes of the use cases. The service is built upon the Copernicus Data Store platform (CDS; ), and takes into account (1) the barriers in ongoing bio-climate assessments and (2) the user requirements of diverse stakeholders (e.g. researcher institutes, local NGO’s, the International Union for Conservation of Nature and Natural Resources (IUCN),…). These have been collected during workshops and bilateral meetings in 2019. A common barrier is the lack of reliable and high-resolution information about states and dynamics of the soil, sea, ice and air for the past and the future climate. Therefore, the service provides relevant bio-climatic indicators on the basis of a wealth of available variables from the latest ERA5 reanalysis datasets and the CMIP5 global climate projections available in CDS. In order to provide information at high resolution and minimize inconsistencies between observed and modelled variables, different downscaling and bias-correction techniques are applied. A common requirement is a universal and flexible interface to the bio-climatic indicators in an easy-to-use and coherent platform that is applicable for different fauna and flora species of interest. Therefore, different applications have been developed within CDS for generating bio-climate suitability envelopes from the high-resolution indicators and to evaluate climate suitability and impacts for the species under present and future climate. Finally, the service is currently tested and refined on the basis of specific use cases. Special attention is given to their transferability to other global and topical studies, hence maximizing external user uptake throughout existing research and policy networks.</p>


2021 ◽  
Vol 70 (3) ◽  
pp. 215-231
Author(s):  
Attila Kovács ◽  
◽  
Andrea Király ◽  

Climate constitutes key resources for tourism since it influences the range of tourism activities and the development of tourism supply. Tourism is highly sensitive to changes in climate elements. It is extremely important for adaptation strategy-making to explore whether the tourism climate conditions in a given region and at a specific time are appropriate and how they may change in the future. This is described by the exposure of the tourism sector to climate conditions and climate change. In this study, we analyse the exposure of tourism for Hungary on a district level and every month (from March to November) with the help of the modified Tourism Climate Index. First, the present conditions are evaluated based on a gridded observational database CarpatClim-HU, which forms the basis for assessing the future conditions. Afterwards, the expected future circumstances are analysed using regional climate model outputs. In order to interpret the uncertainties of the climate projections properly, we use two different model results (HIRHAM5 and RACMO22E) relying on two emission scenarios (RCP4.5 and RCP8.5). The results have demonstrated that the most favourable conditions are found in spring (MAM) and autumn (SON), while in summer (JJA) a decline in climate potential is observed. According to the future tendencies, generally, a decline is expected between May and September, but the other investigated months usually bring an improvement. For a given emission scenario, the expected trend is quite similar for the two model experiments, while for a given climate model, the use of RCP8.5 scenario indicates larger changes than RCP4.5. The results prove that climate change will have an obvious impact on tourism potential in Hungary, and therefore tourism strategy development has to take into account this effect more than before.


2021 ◽  
Vol 9 ◽  
Author(s):  
Brittany E. Davis ◽  
Ted Sommer ◽  
Nann A. Fangue ◽  
Anne E. Todgham

Climate change is warming up water all over the world, including in the San Francisco Estuary. This has caused fish who live there to change their behavior in unexpected ways. All animals, including fish, have regular and specialized behaviors that help them to survive. Fish swim, by themselves or in groups, to move to safer habitats, to find food or mates, or just to avoid danger. Scientists worry that changes to these behaviors brought on by warming water will make estuaries less safe for rare and endangered fish like the delta smelt. In the San Francisco Estuary, we found that warmer waters caused delta smelt to swim faster and further away from their neighbors, and to be eaten more often by predators. All these changes could hurt the ability of delta smelt to survive in the future.


2011 ◽  
Vol 11 (1) ◽  
pp. 59
Author(s):  
Jeremy Schlickenrieder ◽  
Sonia Quiroga ◽  
Agustín Diz ◽  
Ana Iglesias

<p><span>In the face of likely climate change </span>impacts policy makers at different spatial scales need access to assessment tools that enable informed policy instruments to be designed. Recent scientific advances have facilitated the development of improved climate projections, but it remains to be seen whether these are translated into effective adaptation strategies. This paper uses existing databases on climate impacts on European agriculture and combines them with an assessment of adaptive capacity to develop an interdisciplinary approach for prioritising policies. It proposes a method for identifying relevant policies for different EU countries that are representative of various agroclimatic zones. Our analysis presents a framework for integrating current knowledge of future climate impacts with an understanding of the underlying socio-economic, agricultural and environmental traits that determine a region’s capacity for adapting to climate change.</p>


2020 ◽  
Author(s):  
Carlo Buontempo

&lt;p&gt;This years marks the end of the first delegation agreement between the Eurpean Commission and ECMWF for the implementation of the Copernicus Climate Change Service. In the last five years the service was first established, then opened the Climate Data Store and finally became operational attracting the attention of over 30.000 users from all over the world who access tens of global dataset and dowload data at a rate of 50 TB/day to develop climate services.&lt;/p&gt;&lt;p&gt;The paper presents the current status of the implementation of the programme and illustrate some of the options -including changes in the portfolio of the programme- that are currently being considered for the evolution of the service in the future.&lt;/p&gt;


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hendri Irwandi ◽  
Mohammad Syamsu Rosid ◽  
Terry Mart

AbstractThis research quantitatively and qualitatively analyzes the factors responsible for the water level variations in Lake Toba, North Sumatra Province, Indonesia. According to several studies carried out from 1993 to 2020, changes in the water level were associated with climate variability, climate change, and human activities. Furthermore, these studies stated that reduced rainfall during the rainy season due to the El Niño Southern Oscillation (ENSO) and the continuous increase in the maximum and average temperatures were some of the effects of climate change in the Lake Toba catchment area. Additionally, human interventions such as industrial activities, population growth, and damage to the surrounding environment of the Lake Toba watershed had significant impacts in terms of decreasing the water level. However, these studies were unable to determine the factor that had the most significant effect, although studies on other lakes worldwide have shown these factors are the main causes of fluctuations or decreases in water levels. A simulation study of Lake Toba's water balance showed the possibility of having a water surplus until the mid-twenty-first century. The input discharge was predicted to be greater than the output; therefore, Lake Toba could be optimized without affecting the future water level. However, the climate projections depicted a different situation, with scenarios predicting the possibility of extreme climate anomalies, demonstrating drier climatic conditions in the future. This review concludes that it is necessary to conduct an in-depth, comprehensive, and systematic study to identify the most dominant factor among the three that is causing the decrease in the Lake Toba water level and to describe the future projected water level.


Author(s):  
Jennifer A. Curtis ◽  
Lorraine E. Flint ◽  
Michelle A. Stern ◽  
Jack Lewis ◽  
Randy D. Klein

AbstractIn Humboldt Bay, tectonic subsidence exacerbates sea-level rise (SLR). To build surface elevations and to keep pace with SLR, the sediment demand created by subsidence and SLR must be balanced by an adequate sediment supply. This study used an ensemble of plausible future scenarios to predict potential climate change impacts on suspended-sediment discharge (Qss) from fluvial sources. Streamflow was simulated using a deterministic water-balance model, and Qss was computed using statistical sediment-transport models. Changes relative to a baseline period (1981–2010) were used to assess climate impacts. For local basins that discharge directly to the bay, the ensemble means projected increases in Qss of 27% for the mid-century (2040–2069) and 58% for the end-of-century (2070–2099). For the Eel River, a regional sediment source that discharges sediment-laden plumes to the coastal margin, the ensemble means projected increases in Qss of 53% for the mid-century and 99% for the end-of-century. Climate projections of increased precipitation and streamflow produced amplified increases in the regional sediment supply that may partially or wholly mitigate sediment demand caused by the combined effects of subsidence and SLR. This finding has important implications for coastal resiliency. Coastal regions with an increasing sediment supply may be more resilient to SLR. In a broader context, an increasing sediment supply from fluvial sources has global relevance for communities threatened by SLR that are increasingly building resiliency to SLR using sediment-based solutions that include regional sediment management, beneficial reuse strategies, and marsh restoration.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1548
Author(s):  
Suresh Marahatta ◽  
Deepak Aryal ◽  
Laxmi Prasad Devkota ◽  
Utsav Bhattarai ◽  
Dibesh Shrestha

This study aims at analysing the impact of climate change (CC) on the river hydrology of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of this research. A relatively new approach of selecting global climate models (GCMs) for each of the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099). The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional differences of extreme flows of the simulated baseline period (1983–2012). The results showed that future long-term average annual flows are expected to increase in all climatic conditions for both RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-maximum and -minimum flows shows increased high flows and decreased low flows in the future. These results imply the necessity for design modifications in hydraulic structures as well as the preference of storage over run-of-river water resources development projects in the study basin from the perspective of climate resilience.


Sign in / Sign up

Export Citation Format

Share Document