scholarly journals An efficient image cryptography mechanism based on the hybridization of standard encryption algorithms

2020 ◽  
Vol 5 (20) ◽  
pp. 42-47
Author(s):  
Vivek Ranjan ◽  
Kailash Patidar ◽  
Rishi Kushwaha

In our approach the combination of RC4 and Blowfish algorithms with chaos mapping (RC4BC) has been presented for the image encryption. In the first phase image dataset has been considered. Then weight values have been calculated based on the image pixels. It has been calculated based on the attribute pixel, corelated pixels and the analytical factors of the edges. Then substitution has been performed through RC4 encryption mechanism. The substitution has been performed based on 8 sub blocks for the first time. After that different random substation has been applied based on the reallocation of bytes up to 16 rounds. Final substitution has been performed by the blowfish and chaos mapping. By this method the pixels of the images are rotated and shuffled with the XOR operation along with 16-byte reshuffling in each iteration. A total of 50 rounds have been considered for the shuffling, rotation and mapping. Then for comparative analysis peak signal to noise ratio (PSNR) and mean square error (MSE) have been calculated. Our results show that it is efficient in terms of MSE and PSNR values.

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 717
Author(s):  
Mariia Nazarkevych ◽  
Natalia Kryvinska ◽  
Yaroslav Voznyi

This article presents a new method of image filtering based on a new kind of image processing transformation, particularly the wavelet-Ateb–Gabor transformation, that is a wider basis for Gabor functions. Ateb functions are symmetric functions. The developed type of filtering makes it possible to perform image transformation and to obtain better biometric image recognition results than traditional filters allow. These results are possible due to the construction of various forms and sizes of the curves of the developed functions. Further, the wavelet transformation of Gabor filtering is investigated, and the time spent by the system on the operation is substantiated. The filtration is based on the images taken from NIST Special Database 302, that is publicly available. The reliability of the proposed method of wavelet-Ateb–Gabor filtering is proved by calculating and comparing the values of peak signal-to-noise ratio (PSNR) and mean square error (MSE) between two biometric images, one of which is filtered by the developed filtration method, and the other by the Gabor filter. The time characteristics of this filtering process are studied as well.


Author(s):  
Сергей Клавдиевич Абрамов ◽  
Виктория Валерьевна Абрамова ◽  
Сергей Станиславович Кривенко ◽  
Владимир Васильевич Лукин

The article deals with the analysis of the efficiency and expedience of applying filtering based on the discrete cosine transform (DCT) for one-dimensional signals distorted by white Gaussian noise with a known or a priori estimated variance. It is shown that efficiency varies in wide limits depending upon the input ratio of signal-to-noise and degree of processed signal complexity. It is offered a method for predicting filtering efficiency according to the traditional quantitative criteria as the ratio of mean square error to the variance of additive noise and improvement of the signal-to-noise ratio. Forecasting is performed based on dependences obtained by regression analysis. These dependencies can be described by simple functions of several types parameters of which are determined as the result of least mean square fitting. It is shown that for sufficiently accurate prediction, only one statistical parameter calculated in the DCT domain can be preliminarily evaluated (before filtering), and this parameter can be calculated in a relatively small number of non-overlapping or partially overlapping blocks of standard size (for example, 32 samples). It is analyzed the variations of efficiency criteria variations for a set of realizations; it is studied factors that influence prediction accuracy. It is demonstrated that it is possible to carry out the forecasting of filtering efficiency for several possible values of the DCT-filter parameter used for threshold setting and, then, to recommend the best value for practical use. An example of using such an adaptation procedure for the filter parameter setting for processing the ECG signal that has not been used in the determination of regression dependences is given. As a result of adaptation, the efficiency of filtering can be essentially increased – benefit can reach 0.5-1 dB. An advantage of the proposed procedures of adaptation and prediction is their universality – they can be applied for different types of signals and different ratios of signal-to-noise.


Author(s):  
Hussein Abdulameer Abdulkadhim ◽  
Jinan Nsaif Shehab

Although variety in hiding methods used to protect data and information transmitted via channels but still need more robustness and difficulty to improve protection level of the secret messages from hacking or attacking. Moreover, hiding several medias in one media to reduce the transmission time and band of channel is the important task and define as a gain channel. This calls to find other ways to be more complexity in detecting the secret message. Therefore, this paper proposes cryptography/steganography method to hide an audio/voice message (secret message) in two different cover medias: audio and video. This method is use least significant bits (LSB) algorithm combined with 4D grid multi-wing hyper-chaotic (GMWH) system. Shuffling of an audio using key generated by GMWH system and then hiding message using LSB algorithm will provide more difficulty of extracting the original audio by hackers or attackers. According to analyses of obtained results in the receiver using peak signal-to-noise ratio (PSNR)/mean square error (MSE) and sensitivity of encryption key, the proposed method has more security level and robustness. Finally, this work will provide extra security to the mixture base of crypto-steganographic methods.


Artefacts removing (de-noising) from EEG signals has been an important aspect for medical practitioners for diagnosis of health issues related to brain. Several methods have been used in last few decades. Wavelet and total variation based de-noising have attracted the attention of engineers and scientists due to their de-noising efficiency. In this article, EEG signals have been de-noised using total variation based method and results obtained have been compared with the results obtained from the celebrated wavelet based methods . The performance of methods is measured using two parameters: signal-to-noise ratio and root mean square error. It has been observed that total variation based de-noising methods produce better results than the wavelet based methods.


This paper aims in presenting a thorough comparison of performance and usefulness of multi-resolution based de-noising technique. Multi-resolution based image denoising techniques overcome the limitation of Fourier, spatial, as well as, purely frequency based techniques, as it provides the information of 2-Dimensional (2-D) signal at different levels and scales, which is desirable for image de-noising. The multiresolution based de-noising techniques, namely, Contourlet Transform (CT), Non Sub-sampled Contourlet Transform (NSCT), Stationary Wavelet Transform (SWT) and Discrete Wavelet Transform (DWT), have been selected for the de-noising of camera images. Further, the performance of different denosing techniques have been compared in terms of different noise variances, thresholding techniques and by using well defined metrics, such as Peak Signal-to-Noise Ratio (PSNR) and Root Mean Square Error (RMSE). Analysis of result shows that shift-invariant NSCT technique outperforms the CT, SWT and DWT based de-noising techniques in terms of qualititaive and quantitative objective evaluation


The research constitutes a distinctive technique of steganography of image. The procedure used for the study is Fractional Random Wavelet Transform (FRWT). The contrast between wavelet transform and the aforementioned FRWT is that it comprises of all the benefits and features of the wavelet transform but with additional highlights like randomness and partial fractional value put up into it. As a consequence of the fractional value and the randomness, the algorithm will give power and a rise in the surveillance layers for steganography. The stegano image will be acquired after administrating the algorithm which contains not only the coated image but also the concealed image. Despite the overlapping of two images, any diminution in the grade of the image is not perceived. Through this steganographic process, we endeavor for expansion in surveillance and magnitude as well. After running the algorithm, various variables like Mean Square Error (MSE) and Peak Signal to Noise ratio (PSNR) are deliberated. Through the intended algorithm, a rise in the power and imperceptibility is perceived and it can also support diverse modification such as scaling, translation and rotation with algorithms which previously prevailed. The irrefutable outcome demonstrated that the algorithm which is being suggested is indeed efficacious.


2019 ◽  
Vol 81 (6) ◽  
Author(s):  
A. Nazifah Abdullah ◽  
S. H. K. Hamadi ◽  
M. Isa ◽  
B. Ismail ◽  
A. N. Nanyan ◽  
...  

Partial discharge (PD) measurement is an essential to detect and diagnose the existence of the PD. However, this measurement has faced noise disturbance in industrial environments. Thus, PD analysis system using discrete wavelet transform (DWT) denoising technique via Laboratory Virtual Instrument Engineering Workbench (LabVIEW) software is proposed to distinguish noise from the measured PD signal. In this work, the performance of denoising process is analyzed based on calculated mean square error (MSE) and signal to noise ratio (SNR). The result is manipulated based on Haar, Daubechies, Coiflets, Symlets and Biorthogonal type of mother wavelet with different decomposition levels. From the SNR results, all types of the mother wavelet are suitable to be used in denoising technique since the value of SNR is in large positive value. Therefore, further studies were conducted and found out that db14, coif3, sym5 and bior5.5 wavelets with least MSE value are considered good to be used in the denoising technique. However, bior5.5 wavelet is proposed as the most optimum mother wavelet due to consistency of producing minimum value of MSE and followed by db14.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Gustavo Asumu Mboro Nchama ◽  
Angela Leon Mecias ◽  
Mariano Rodriguez Ricard

The Perona-Malik (PM) model is used successfully in image processing to eliminate noise while preserving edges; however, this model has a major drawback: it tends to make the image look blocky. This work proposes to modify the PM model by introducing the Caputo-Fabrizio fractional gradient inside the diffusivity function. Experiments with natural images show that our model can suppress efficiently the blocky effect. Also, our model has good performance in visual quality, high peak signal-to-noise ratio (PSNR), and lower value of mean absolute error (MAE) and mean square error (MSE).


Image inpainting is the process of reconstruction of the damaged image and removal of unwanted objects in an image. In the image inpainting process patch priority andselection of best patch playsa major role. The patch size is also considered for producing good results in the image inpainting. In this paper patch priority is obtained by introducing a regularization factor (ɷ). The best patch selection is acquired by using the Sum of Absolute Difference (SAD) distance method. The results of inpainting are investigated with adjustable patch sizes of 5×5, 7×7, 9×9, 11×11, and 13×13 for the proposed method. The performance of these adjustable patch sizes is observed by using Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE). The best suitable patch size for good inpainting is announced based on the values of PSNR and MSE.


Sign in / Sign up

Export Citation Format

Share Document