scholarly journals Effect of Angle of Attack on Pressure and Lift Coefficient of ONERA OA206 Wing Model Using Computational Fluid Dynamics Method

Author(s):  
Resti Anggraeni

In this study, we computed the lift force of the aircraft with ONERA OA206 airfoil type. It was positioned at 0%, 25%, 50%, 75%, and 100% of the wingspan for Angle of Attack (AoA) variations of 0o, 4o, 8o, 12o, and 16o. The research was to determine the effect of AoA on pressure, pressure coefficient (Cp), and lift coefficient (CL) on the ONERA OA206 aircraft wing. It shows that the greater AoA on the result of the pressure contour causes the increase in the difference of span at AoA 0o to 16o t these are 0.25%; 0.26%; 0.43%; 0.52%; and 0.53%. Through the graph of the pressure coefficient (Cp) against x/c, it can be seen that the greater AoA, the expansion point, and the stagnation point will shift to the right with the direction of x/c. In addition, the Cp at the lower is greater than the upper of the airfoil. Based on the research results, it was found that CL at the position of 0% to 50% increased when given AoA from 0o to 12o (CL max) and decreased at AoA = 16o (stall). Meanwhile, CL at 75% to 100% increased when given AoA from 0o to 8o (CL max) and decreased at AoA = 12o (stall). With these results, it can be concluded that the maximum AoA that can be applied to the wing of the ONERA OA206 aircraft is 8o. The closer to the end position of the airfoil, the higher the CL measured.

2018 ◽  
Vol 11 (2) ◽  
pp. 49
Author(s):  
Gaguk Jatisukamto ◽  
Mirna Sari

Kestabilan pesawat terbang ditentukan oleh desain airfoil sayap dan ekor. Perbedaan kecepatan aliran udara antara permukaan atas dan bawah airfoil menghasilkan perbedaan tekanan sehingga akan memberikan gaya angkat (lift) pada sayap. Perbedaan tekanan udara pada permukaan sayap dinyatakan dengan pressure coefficient (Cp), yaitu perbedaan tekanan statik lokal dengan tekanan statik aliran bebas. Koefisien lift (Cl) adalah rasio antara gaya angkat (lift) dengan tekanan dinamis. Peningkatan angka CL sebesar 20,4% pada riset sebelumnya diperoleh berdasarkan simulasi penambahan flap. Tujuan penelitian ini adalah membandingkan hasil simulasi airfoil double slot flap LS(01)-0417 MOD  dengan airfoil NASA SC(2) 0610 yang tanpa flap dan mencari korelasi antara sudut serang (?) dengan koefisien lift (Cl ).Metodologi penelitian dilakukan dengan simulasi Computational Fluid Dynamic (CFD). Hasil penelitian dapat disimpulkan bahwa koefisien lift CL untuk airfoil double slot flap LS(01)-0417 MOD menghasilkan CL = 1,498 sedangkan dengan sudut serang ? = 16o sedangkan airfoil NASA SC(2) 0610 tanpa flap memiliki nilai CL = 1,095 dengan sudut serang 13o. The stability of the aircraft is ordered by the airfoil design of the wings and the tail. The difference in flow velocity between the surface and the bottom of the airfoil will produce styles that will present lift  on the wings. The difference in airflow velocity between the top and bottom surfaces of the airfoil produces a pressure difference so it will provide lift (lift) on the wing. The lift coefficient (CL) is the ratio between lift with dynamic pressure. The difference of air pressure on the wing surface is expressed by pressure coefficient (Cp), the difference of local static pressure with free flow static pressure. The lift coefficient (Cl) is the ratio of lift to dynamic pressure. An increase in CL value of 20.4% in previous research was obtained based on the simulation of flap addition. The purpose of this research is comparison between airfoil double slot flap LS (01)-0417 MOD with airfoil NASA SC (2) 0610 without flap and search between angle of attack (?) with coefficient of lift (Cl). Method research is done by Computational Fluid Dynamic (CFD). The result of this research can be concluded that lift coefficient CL for double slot airfoil flap LS (01)-0417 MOD yield CL = 1,498 while with angle of attack ? = 16o while airfoil NASA SC (2) 0610 without flap have value CL = 1,095 with angle of attack 13o


2019 ◽  
Vol 131 ◽  
pp. 01120
Author(s):  
Lei Wang ◽  
Lu Min Wang ◽  
Yong Li Liu ◽  
Wen Wen Yu ◽  
Guang Rui Qi ◽  
...  

The effect of board bending degree on hydrodynamic performances of a single-layer cambered otter-board was investigated using engineering models in a wind tunnel. Three different bending degree boards were evaluated at a wind speed of 28 m/s. Parameters measured included: drag coefficient Cx, lift coefficient Cy, pitch moment coefficient Cm, center of pressure coefficient Cp , over a range of angle of attack (0° to 70°). These coefficients were used in analyzing the differences in the performance among the three otter-board models. Results showed that the bending of the board(No. 2, No. 3) increased the water resistance of the otter-board, and improved the lift coefficient of the otter-board in the small angle of attack (0°<α≤20 °) ; the maximum lift coefficients Cy of otter-board model (No. 1) was higher (1.680, α = 25°). the maximum lift–drag ratios of models (No. 1, No. 2 and No. 3) are 6.822 (α = 7.5 °), 6.533 (α = 2.5 °) and 6.384 (α = 5.0°), which showed that the board bending reduces the lift-to-drag ratio of the otter-board.The stability of the No. 3 model was better than those two models (No. 1, No. 2) in most range of attack angle, but No. 1 otter-board model had a better stability in roll of otter-board. The findings of this study can offer useful reference data for the structural optimization of otter-boards for trawling.


2014 ◽  
Vol 592-594 ◽  
pp. 1889-1896 ◽  
Author(s):  
G. Srinivas ◽  
B.P. Madhu Gowda

Any aircraft wing is the major component which will play vital role in the generation of lift and at different maneuvering moments throughout the flight. So to maintain this good maneuverability the aircraft wing has to undergo deferent deflections called angle of attack such that the high lift and low drag or vice versa can be settled in the flight. Taking this as the motivation the analysis was carried out on the standard wing airfoil comparing with new designed airfoil. Analyze the numerical simulation values like coefficient of lift, coefficient of Drag, Lift, Drag, and Energy parameters with wind tunnel data to predict accuracy for both the airfoils. Through the selected public literature standard airfoil data and designed airfoil data has been chosen, the geometry was created in the GAMBIT and also the meshing by selecting the suitable c-grid and rectangular grid for the better flow analysis in the FLUENT. The mesh file was imported into the FLUENT software there suitable boundary conditions and operating conditions are given for successful flow convergence. Finally analyzing these results are expecting to be best suitable for good aeromechanical features.


2014 ◽  
Vol 1044-1045 ◽  
pp. 654-658
Author(s):  
Wei Long ◽  
Zai Shuai Ling ◽  
Zhen Dang

The Steady flow simulation to selected the delta wing model for different angles of attack in the Maher number.The law of flow field changes with the angle of attack is gotten.Through the FLUENT simulation,The variation tendency of coefficient of lift and drag in the different angle of attack is gotten.Further reveals the change rule of Maher number, pressure, velocity and other parameters in the different angle of attack.With increasing angle of attack, Maher number distribution is sparse of the same position increases and the greater numerical.the distribution of velocity vector is sparse of the same position increases and the greater numerical.the pressure distribution is sparse of the same position increases and the greater numerical.


2017 ◽  
Vol 15 (1) ◽  
pp. 45
Author(s):  
Awalu Romadhon ◽  
Dana Herdiana

LSU-05 aircraft is one of the unmanned aerial vehicles (UAV), which is being developed by the Aeronautics Technology Center of LAPAN, whose mission is for research, observation, patrol, border surveillance, and investigation of natural disasters. This study aims to determine the effect of vortex generators on the aerodynamic characteristics of the LSU-05 Unmanned Aircraft wing. The method used is a numerical analysis with CFD simulation for predicting aerodynamic characteristics and flow phenomena that occur. The models used are the aircraft wing of the LSU-05 without vortex generator and with vortex generator designed with CATIA software. The simulation is using ANSYS Fluent software to determine changes in the aerodynamic characteristics of the wing after the addition of vortex generators such as the lift coefficient and drag coefficient. The results of the addition of vortex generator on LSU-05 wings are the increasing value of the maximum lift coefficient of the wing which becomes 1,34840 from 1,26450, it increases 0,0839 (6.63%) point, the increasing value of the drag coefficient on the angle of attack from -9⁰ to 11⁰, the decreasing value of the drag coefficient on the angle of attack 12⁰ up to 15⁰ and the increasing stall angle of wing from 11⁰ to 14⁰ or increased by 3⁰ (27,7%). AbstrakPesawat LSU-05 adalah salah satu pesawat tanpa awak (UAV) yang sedang dikembangkan oleh Pusat Teknologi Penerbangan LAPAN, yang mempunyai misi untuk kegiatan penelitian, observasi, patroli, pengawasan perbatasan wilayah, dan investigasi bencana alam. Penelitian ini bertujuan untuk mengetahui pengaruh penambahan vortex generator terhadap karakteristik aerodinamika dari sayap Pesawat Tanpa Awak LSU-05. Metode yang digunakan adalah analisis numerik dengan simulasi CFD untuk memprediksi karakteristik aerodinamika dan fenomena aliran yang terjadi. Model yang digunakan adalah sayap pesawat LSU-05 tanpa vortex generator dan dengan vortex generator yang didesain dengan software CATIA. Simulasi menggunakan software ANSYS Fluent untuk mengetahui perubahan karakteristik aerodinamika sayap setelah penambahan vortex generator seperti koefisien lift dan koefisien drag. Hasil yang diperoleh dari penelitian penambahan vortex generator pada sayap Pesawat LSU-05 adalah peningkatan nilai koefisien lift maksimum sayap dari 1,26450 menjadi 1,34840 atau naik sebesar 0,0839 (6,63%), peningkatan nilai koefisien drag pada sudut serang -9⁰ s/d 11⁰, penurunan nilai koefisien drag pada sudut serang 12⁰ s.d 15⁰ dan peningkatan sudut stall sayap dari 11⁰ menjadi 14⁰ atau naik sebesar 3⁰ (27,7 %).


Author(s):  
Smit Shendge

Abstract: In this scope of study, various type of spoiler is researched out of which a pedestal spoiler is chosen to design as it generates a very good downforce and also has good aesthetic appeal to it, spoiler is designed considering actual scaled dimensions. Analysis on the designed pedestal spoiler is carried out to get to know how much the downforce is generated and at the same time how much drag coefficient is produced. Also, angle of attack of the spoiler in various degrees (9, 6, 4, 3, 2, 0, -2, - 3, -4, -6, -9, -12, -15) is carried out to know downforce at various angle of attack with various velocity (10, 15, 20, 25, 30, 35, 40, 45, 50) inputs in meter per seconds. After carrying out more than 80 analysis, found that highest downforce generated by the spoiler’s angle of attack is at (-6) degree with a 400 N of downforce and also with low drag. Velocity magnitude contour plot of each angle is provided to understand the air flow around each angle of attack. To validate the results given by the simulation tool a mathematical/analytical calculation are carried out for four angles of attack with a good result and also graphs are plotted for each validation to figure out the variation in them. Observing the validation’s graphs and calculations the difference between computational results and mathematical/analytical results is less than 5% indicating a proper process carried out in simulation and approximately giving realistic values that can be given in a wind tunnel aerodynamic test. Keywords: Spoiler, Aerodynamics, CAD, CFD, Drag coefficient, Lift coefficient, angle of attack.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012078
Author(s):  
Rui Yin ◽  
Jing Huang ◽  
Zhi-Yuan He

Abstract The aerodynamic characteristics of NACA4412 airfoil with different pitching motion elements were compared and analyzed based on CFD in this research. The results are acquired as follows: the difference between the lift and drag coefficients of the airfoil during pitch up and pitch down motions becomes larger with the increase of the pitching amplitude or initial angle of attack; as the pitching amplitude increases, the lift coefficient grows slightly greater and the drag coefficient grows much greater; as the initial angle of attack increases, the lift coefficient grows much greater and the drag coefficient grows slightly; the smaller the attenuation frequency is, the larger the lift-to-drag ratio of the airfoil will be.


2018 ◽  
Vol 152 ◽  
pp. 02017
Author(s):  
Abdulkareem Shafiq Mahdi Al-Obaidi ◽  
Ting Chern Wei

Various non-conventional wing development shows potential in increasing the aerodynamic performance of airplanes. If the non-conventional wing only improves the aerodynamic performance by a small margin, conventional wing is still a better option for airline operators. This provides opportunity to continue research on non-conventional configurations that can greatly saves the fuel consumption. This research was conducted to examine the lift and drag of non-conventional wings at low subsonic speed and low angle of attack. Analytical method based on DATCOM was used to calculate the lift and drag coefficients of non-conventional cranked wing for comparison with experimental results obtained experimentally using Taylor’s wind tunnel (TWT). Experimental lift coefficient shows similar values with the analytical results but experimental drag coefficient had an average difference of 44%. The experimental setup and calibration of TWT were verified and further case studies on nonconventional wing model featuring trailing edge notches were carried out. Analysis of the results from case studies shows that generally the effect of varying the number of notches only had significant effect on drag reduction if the notch depth was higher. For flight condition that does not exceed 4° angle of attack, lower number of notches at higher notch depth had the best aerodynamic performance. On the other hand, for flight condition that requires cruise angle of attack that exceeds 4°, higher number of notches at higher notch depth had the best aerodynamic performance.


Author(s):  
Siti Aisyah Ayudia ◽  
Artoto Arkundato ◽  
Lutfi Rohman

The lift force is one of the important factors in supporting the aircraft flying capabilities. The airplane has a section called the aircraft wing. In particular, the wing section of aircraft is called the airfoil. One of the efforts to increase the lift force is to make the flow of air fluid at the top of the airfoil more turbulent. Turbulent flow can attract momentum from the boundary layer, the result of this momentum transfer has energy that is more resistant to the adverse pressure gradient which can trigger the flow separation. Efforts that can be made to reduce separation flow and increase lift force are the addition of a turbulent generator on the upper surface of the airfoil, one type of turbulent generator is a vortex generator, a vortex generator can accelerate the transition from the laminar boundary layer to the turbulent boundary layer. This study was conducted with the aim of knowing the effect of the vortex generator on the aerodynamics of NACA-4412 using the computational fluid dynamics method. The main thing that will be investigated is the effect of the straight type vortex generator application on the lift coefficient, by comparing the plain airfoil and airfoil that has been applied to the vortex generator to vary the angle of attack. The variation of the angles of attack are 0º, 5º, 10º, 15º and the placement of the vortex generator is 24% of the leading edge. The results obtained that the lift coefficient changes with increasing angle of attack and the application of a vortex generator to an airfoil can increase the lift coefficient than a plain airfoil. The optimum increase in lift coefficient is at the angle of attack of 5º as much as 13%.


2021 ◽  
Vol 1206 (1) ◽  
pp. 012013
Author(s):  
D Makhija ◽  
S V Jain ◽  
A M Achari ◽  
K Ghosh

Abstract This paper presents a design of force balance setup that can measure lift force acting on the aircraft model. The setup was developed indigenously and installed in an open circuit low-speed wind tunnel. It mainly consists of two components viz. a traverse mechanism that can hold the model in the test section at different angles of attack and air speeds and a supporting frame to hold the traverse mechanism over it. The spring balances are used to obtain lift force readings at different angles and air speeds. The experimental and numerical investigations were done in the wide range of Reynolds number (range: 0.55 to 1.12 lakh) and angle of attack (range: -6° to 20°). The results are presented in terms of pressure contours, velocity contours, pressure coefficient and lift coefficient. From the experiments it was found that value of lift coefficient increases with angle of attack and stalling occurs at 18° for all the air speeds. However, in the numerical results the stalling was observed little earlier than 18° angle of attack. The experimental results were compared with CFD results and an average relative error of 18% was observed which may be due to assumption of 2-D airfoil in CFD analysis.


Sign in / Sign up

Export Citation Format

Share Document