Aerodynamic Performance Comparison of Airfoils by Varying Angle of Attack Using Fluent and Gambit

2014 ◽  
Vol 592-594 ◽  
pp. 1889-1896 ◽  
Author(s):  
G. Srinivas ◽  
B.P. Madhu Gowda

Any aircraft wing is the major component which will play vital role in the generation of lift and at different maneuvering moments throughout the flight. So to maintain this good maneuverability the aircraft wing has to undergo deferent deflections called angle of attack such that the high lift and low drag or vice versa can be settled in the flight. Taking this as the motivation the analysis was carried out on the standard wing airfoil comparing with new designed airfoil. Analyze the numerical simulation values like coefficient of lift, coefficient of Drag, Lift, Drag, and Energy parameters with wind tunnel data to predict accuracy for both the airfoils. Through the selected public literature standard airfoil data and designed airfoil data has been chosen, the geometry was created in the GAMBIT and also the meshing by selecting the suitable c-grid and rectangular grid for the better flow analysis in the FLUENT. The mesh file was imported into the FLUENT software there suitable boundary conditions and operating conditions are given for successful flow convergence. Finally analyzing these results are expecting to be best suitable for good aeromechanical features.

1964 ◽  
Vol 86 (2) ◽  
pp. 197-204
Author(s):  
J. Auslaender

Linearized airfoil theory—in conjunction with a mapping technique—is applied to the calculation of the forces and moments acting on supercavitating hydrofoils operating near a free surface at very large Froude numbers and zero cavitation number. Only the effects of angle of attack and flap deflection are considered. The results—intended for engineering use—are presented primarily in the form of curves of flap effectiveness, lift curve slope, pitching and hinge moment coefficient, and flap loading versus flap-chord ratio, depth being introduced as a parameter. Lift-drag ratio and hinge moment coefficient as functions of lift coefficient are presented for typical operating conditions.


2005 ◽  
Vol 29 (4) ◽  
pp. 331-339 ◽  
Author(s):  
Liu Hong ◽  
Huo Fupeng ◽  
Chen Zuoyi

Optimum aerodynamic performance of a wind turbine blade demands that the angle of attack of the relative wind on the blade remains at its optimum value. For turbines operating at constant speed, a change in wind speed causes the angle of attack to change immediately and the aerodynamic performance to decrease. Even with variable speed rotors, intrinsic time delays and inertia have similar effects. Improving the efficiency of wind turbines under variable operating conditions is one of the most important areas of research in wind power technology. This paper presents findings of an experimental study in which an oscillating air jet located at the leading edge of the suction surface of an aerofoil was used to improve the aerodynamic performance. The mean air-mass flowing through the jet during each sinusoidal period of oscillation equalled zero; i.e. the jet both blew and sucked. Experiments investigated the effects of the frequency, momentum and location of the jet stream, and the profile of the turbine blade. The study shows significant increase in the lift coefficient, especially in the stall region, under certain conditions. These findings may have important implications for wind turbine technology.


Author(s):  
Resti Anggraeni

In this study, we computed the lift force of the aircraft with ONERA OA206 airfoil type. It was positioned at 0%, 25%, 50%, 75%, and 100% of the wingspan for Angle of Attack (AoA) variations of 0o, 4o, 8o, 12o, and 16o. The research was to determine the effect of AoA on pressure, pressure coefficient (Cp), and lift coefficient (CL) on the ONERA OA206 aircraft wing. It shows that the greater AoA on the result of the pressure contour causes the increase in the difference of span at AoA 0o to 16o t these are 0.25%; 0.26%; 0.43%; 0.52%; and 0.53%. Through the graph of the pressure coefficient (Cp) against x/c, it can be seen that the greater AoA, the expansion point, and the stagnation point will shift to the right with the direction of x/c. In addition, the Cp at the lower is greater than the upper of the airfoil. Based on the research results, it was found that CL at the position of 0% to 50% increased when given AoA from 0o to 12o (CL max) and decreased at AoA = 16o (stall). Meanwhile, CL at 75% to 100% increased when given AoA from 0o to 8o (CL max) and decreased at AoA = 12o (stall). With these results, it can be concluded that the maximum AoA that can be applied to the wing of the ONERA OA206 aircraft is 8o. The closer to the end position of the airfoil, the higher the CL measured.


2017 ◽  
Vol 15 (1) ◽  
pp. 45
Author(s):  
Awalu Romadhon ◽  
Dana Herdiana

LSU-05 aircraft is one of the unmanned aerial vehicles (UAV), which is being developed by the Aeronautics Technology Center of LAPAN, whose mission is for research, observation, patrol, border surveillance, and investigation of natural disasters. This study aims to determine the effect of vortex generators on the aerodynamic characteristics of the LSU-05 Unmanned Aircraft wing. The method used is a numerical analysis with CFD simulation for predicting aerodynamic characteristics and flow phenomena that occur. The models used are the aircraft wing of the LSU-05 without vortex generator and with vortex generator designed with CATIA software. The simulation is using ANSYS Fluent software to determine changes in the aerodynamic characteristics of the wing after the addition of vortex generators such as the lift coefficient and drag coefficient. The results of the addition of vortex generator on LSU-05 wings are the increasing value of the maximum lift coefficient of the wing which becomes 1,34840 from 1,26450, it increases 0,0839 (6.63%) point, the increasing value of the drag coefficient on the angle of attack from -9⁰ to 11⁰, the decreasing value of the drag coefficient on the angle of attack 12⁰ up to 15⁰ and the increasing stall angle of wing from 11⁰ to 14⁰ or increased by 3⁰ (27,7%). AbstrakPesawat LSU-05 adalah salah satu pesawat tanpa awak (UAV) yang sedang dikembangkan oleh Pusat Teknologi Penerbangan LAPAN, yang mempunyai misi untuk kegiatan penelitian, observasi, patroli, pengawasan perbatasan wilayah, dan investigasi bencana alam. Penelitian ini bertujuan untuk mengetahui pengaruh penambahan vortex generator terhadap karakteristik aerodinamika dari sayap Pesawat Tanpa Awak LSU-05. Metode yang digunakan adalah analisis numerik dengan simulasi CFD untuk memprediksi karakteristik aerodinamika dan fenomena aliran yang terjadi. Model yang digunakan adalah sayap pesawat LSU-05 tanpa vortex generator dan dengan vortex generator yang didesain dengan software CATIA. Simulasi menggunakan software ANSYS Fluent untuk mengetahui perubahan karakteristik aerodinamika sayap setelah penambahan vortex generator seperti koefisien lift dan koefisien drag. Hasil yang diperoleh dari penelitian penambahan vortex generator pada sayap Pesawat LSU-05 adalah peningkatan nilai koefisien lift maksimum sayap dari 1,26450 menjadi 1,34840 atau naik sebesar 0,0839 (6,63%), peningkatan nilai koefisien drag pada sudut serang -9⁰ s/d 11⁰, penurunan nilai koefisien drag pada sudut serang 12⁰ s.d 15⁰ dan peningkatan sudut stall sayap dari 11⁰ menjadi 14⁰ atau naik sebesar 3⁰ (27,7 %).


2021 ◽  
Vol 2076 (1) ◽  
pp. 012066
Author(s):  
Rui Yin ◽  
Jing Huang ◽  
Zhi-Yuan He

Abstract The NACA4415 airfoil was numerically simulated with the help of the Fluent software to analyze its aerodynamic characteristics. Results are acquired as follows: The calculation accuracy of Fluent software is much higher than that of XFOIL software; the calculation result of SST k-ω(sstkw) turbulence model is closest to the experimental value; within a certain range, the larger the Reynolds number is, the larger the lift coefficient and lift-to-drag ratio of the airfoil will be, and the smaller the drag coefficient will be; when the angle of attack is less than the optimal angle of attack, the Reynolds number has less influence on the lift-to-drag coefficient and the lift-to-drag ratio; as the Reynolds number increases, the optimal angle of attack increases slightly, and the applicable angle of attack range for high lift-to-drag ratios becomes smaller.


2013 ◽  
Vol 465-466 ◽  
pp. 358-362
Author(s):  
Hasan Taher M. Elkamel ◽  
Bambang Basuno ◽  
Abobaker Mohammed Alakashi

This study presents Two Dimensional Compressible Flow Analysis Over a Generic Cruise Missile Model. The aerodynamics analysis carried out by use of Fluent Software. Here the pertinent Cruise missile geometry data had been chosen is BGM-109 tomahawk missile. Basically the flow problem around this missile model is a three dimensional flow problem. Treating the flow problem in view as two dimensional flow case, since their result will be used as a comparison purposes with the CFD code which currently under development. The aerodynamics analysis of this missile model carried at the free stream Mach number M = 0.7 for three different angle of attacks α = - 50, 0 and α = 50 . Here the flow is treated as an inviscid compressible flow applied to the missile configuration as (1) fuselage alone, (2) a combined configuration as fuselage and tail and (3) as wing body tail configuration. The results obtained by use of fluent software for those three configurations indicate the flow pattern surrounding object in term of flow properties ( pressure, density and Mach number ) change significantly between the missile as fuselage alone and their other combined configurations. As the angle of attack increase the change of flow pattern surrounding the missile become apparently compared to flow pattern at zero angle of attack. In addition to this, a symmetrical solution between the result at angle of attack α = 50 and α = -50 are also found.


2017 ◽  
Vol 3 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Zbigniew Czyż ◽  
Ibrahim Ilhan ◽  
Mert Akcay ◽  
Jacek Czarnigowski

The paper presents the results of the simulation of the air flow around the gyroplane without the influence of the rotor and pusher propellers. Three-dimensional calculations were performed using ANSYS Fluent software. Based on the calculations, the values of the drag force and the lift force on each component of the rotorcraft were determined. Based on the results obtained, the effect of angle of attack on the aerodynamic forces was obtained.


2014 ◽  
pp. 298-301 ◽  
Author(s):  
Arnaud Petit

Bois-Rouge factory, an 8000 t/d cane Reunionese sugarcane mill, has fully equipped its filtration station with vacuum belt press filters since 2010, the first one being installed in 2009. The present study deals with this 3-year experience and discusses operating conditions, electricity consumption, performance and optimisation. The comparison with the more classical rotary drum vacuum filter station of Le Gol sugar mill highlights advantages of vacuum belt press filters: high filtration efficiency, low filter cake mass and sucrose content, low total solids content in filtrate and low power consumption. However, this technology needs a mud conditioning step and requires a large amount of water to improve mud quality, mixing of flocculant and washing of filter belts. The impact on the energy balance of the sugar mill is significant. At Bois-Rouge mill, studies are underway to reduce the water consumption by recycling low d.s. filtrate and by dry cleaning the filter belts.


Author(s):  
Giuseppe Starace ◽  
Lorenzo Falcicchia ◽  
Pierpaolo Panico ◽  
Maria Fiorentino ◽  
Gianpiero Colangelo

AbstractIn refrigeration systems, evaporative condensers have two main advantages compared to other condensation heat exchangers: They operate at lower condensation temperature than traditional air-cooled condensers and require a lower quantity of water and pumping power compared to evaporative towers. The heat and mass transfer that occur on tube batteries are difficult to study. The aim of this work is to apply an experimental approach to investigate the performance of an evaporative condenser on a reduced scale by means of a test bench, consisting of a transparent duct with a rectangular test section in which electric heaters, inside elliptical pipes (major axis 32 mm, minor axis 23 mm), simulate the presence of the refrigerant during condensation. By keeping the water conditions fixed and constant, the operating conditions of the air and the inclination of the heat transfer geometry were varied, and this allowed to carry out a sensitivity analysis, depending on some of the main parameters that influence the thermo-fluid dynamic phenomena, as well as a performance comparison. The results showed that the heat transfer increases with the tube surface exposed directly to the air as a result of the increase in their inclination, that has been varied in the range 0–20°. For the investigated conditions, the average increase, resulting by the inclination, is 28%.


2021 ◽  
Vol 11 (13) ◽  
pp. 5772
Author(s):  
Dawid Lis ◽  
Adam Januszko ◽  
Tadeusz Dobrocinski

The purpose of this article is to present and discuss the results of a non-standard unnamed aerial vehicle construction with a constant cross-section square-shaped avionic profile. Based on the model’s in-air observed maneuverability, the research of avionic construction behavior was carried out in a water tunnel. The results show the model’s specific lift capabilities in comparison to classical avionic constructions. The characteristic results of the lift coefficient showed that the unmanned aerial vehicle presents favorable features than classic avionic constructions. The model was created with the prospect of using it in the future for dual-use purposes, where unmanned aerial vehicles are currently experiencing very rapid development. When creating the prototype, the focus was on low production cost, as well as convenience in operation. The development of this type of breakthrough avionic solution, which shows extraordinary maneuverability, may contribute to increasing the popularity and, above all, the availability of unmanned aerial vehicles for the largest possible group of recipients because of high avionic properties in relation to the technical construction complexity.


Sign in / Sign up

Export Citation Format

Share Document