scholarly journals On board recognition of different fuels in SI engines with the use of dimensional and non-dimensional vibration signal parameters

2009 ◽  
Vol 136 (1) ◽  
pp. 69-75
Author(s):  
Paweł FABIŚ ◽  
Bartosz FLEKIEWICZ ◽  
Marek FLEKIEWICZ

Gaseous fuels such as natural gas and propane butane mixtures are currently the most popular fuels for dual fuel internal combustion engines. Gaseous fuels are more resistant to knocking than conventional liquid fuels they mix better with air. There have been many published works on the use of gaseous fuels but the problem of the combustion noise, as a very important source of acoustic discomfort is not getting enough attention. Combustion noise occurs in a direct and indirect form. It is transmitted throughout the engine block as a vibration at a different spectrum of frequencies. In this study an attempt has been made to correlate the combustion noise with the operating parameters of an engine fueled with LPG, CNG and CNG-hydrogen mixtures as compared to petrol fueled engine. Signals of multiple resonance in the combustion chamber and corresponding vibration signals of the cylinder block of engine have been considered for one combustion cycle. A four cylinder, 1.6 dm3 spark-ignition engine converted to run on LPG, CNG and CNG-hydrogen mixtures has been tested in the project. A well known diagnostic parameter was used for comparison of the engine noise for its operation on gasoline and alternative fuels. A new non-dimensional indicator has also been proposed for the engine vibration estimation purposes the Increase Wavelet Ratio C’ab, precisely described in the paper.

2019 ◽  
pp. 146808741985910 ◽  
Author(s):  
Guillermo Rubio-Gómez ◽  
Lis Corral-Gómez ◽  
David Rodriguez-Rosa ◽  
Fausto A Sánchez-Cruz ◽  
Simón Martínez-Martínez

In the last few years, increasing concern about the harmful effects of the use of fossil fuels in internal combustion engines has been observed. In addition, the limited availability of crude oil has driven the interest in alternative fuels, especially biofuels. In the context of spark ignition engines, bioalcohols are of great interest owing to their similarities and blend capacities with gasoline. Methanol and ethanol have been widely used, mainly due to their knocking resistance. Another alcohol of great interest is butanol, thanks to its potential of being produced as biofuel and its heat value closer to gasoline. In this study, a comparative study of gasoline–alcohol blend combustion, with up to 20% volume, with neat gasoline has been carried out. A single-cylinder, variable compression ratio, Cooperative Fuel Research-type spark ignition engine has been employed. The comparison is made in terms of fuel conversion efficiency and flame development angle. Relevant information related to the impact in the combustion process of the use of the three main alcohols used in blends with gasoline has been obtained.


2003 ◽  
Author(s):  
K. Majmudar ◽  
K. Aung

The use of alternative fuels such as methanol and ethanol in spark-ignition (SI) engines is beneficial to the environment as it reduces emissions of pollutants such as NOx from these engines with slight penalty on the performance. This paper investigated the use of liquid fuel blends such as ethanol/gasoline blend in an SI engine by numerical simulations. The numerical simulations were based on the models of finite heat release, cylinder heat transfer, pumping losses, and friction losses. Simulations were carried out to evaluate the effects of compression ratio, equivalence ratio, ignition timing, and engine speed on the performance of the SI engine. The results of the simulations were compared with experimental data from the literature to validate the simulations. Good agreements between the computed and experimental results were obtained. The results showed that the current model could satisfactorily predict the performance of an SI engine fueled by liquid fuel blends.


2017 ◽  
Vol 121 (1246) ◽  
pp. 1779-1794
Author(s):  
O. Antoshkiv ◽  
Th. Poojitganont ◽  
L. Jehring ◽  
C. Berkholz

ABSTRACTVarious liquid and gaseous alternative fuels have been proposed to replace the kerosene as aircraft fuel. Furthermore, new combustion technologies were developed to reduce the emissions of aero-engine. A staged fuel injection arrangement for a lean burn combustion system was applied to improve the operability of an aero-engine by achieving high flame stability at reduced combustion emissions. Originally, both circuits (pilot and main) are fuelled by kerosene; moreover, the pilot injector is operating at low power (engine idle and approach) and the pilot flame is anchored in an airflow recirculation zone. In the case of the performed research, the pilot injector was modified to allow the use of gaseous fuels. Thus, the burner model allows a flexible balancing of the mass flows for gaseous and liquid fuel. The present paper describes the investigation of ignitability for the proposed staged combustor model fuelled by gaseous and liquid fuels. A short overview on physical properties of used fuels is given. To investigate atomisation and ignition, different measurements systems were used. The effectiveness of two ignitor types (spark plug and laser ignitor) was analysed. The ignition performance of the combustor operating on various fuels was compared and discussed in detail.


2019 ◽  
Vol 85 (12) ◽  
pp. 110-116
Author(s):  
Lev Leybovych ◽  
Yurii Yevstigneyev

The efficiency of combustion of liquid fuels in heat engines is determined by their hydrocarbon composition. The rate of combustion and the completeness of combustion depend on  the  hydrocarbon composition of the fuel. One of the ways to increase the efficiency of combustion of fuel is to use fuel-hydrogen mixtures. The use of such mixtures gives prerequisites for low-temperature self-ignition of fuel droplets (about 590 °C). Preheating of the fuel gives the possibility of "explosive" combustion with increasing of the temperature up to 2500 K in 0.02 –. 0.04 ms. This leads to the intensification of heavy fuel combustion. The use of fuel-hydrogen mixtures allows to obtain a low level of harmful emissions with flue gases and to reduce emissions: CO and CH – not less than 15%, CO2 – not less than 20%. A promising direction for the creation of such mixtures is the direct dissolution of hydrogen in liquid fuel. This simplifies the flow of the fuel-hydrogen mixture into the combustion chamber of the heat engine or into the cylinders of the internal combustion engines. Analysis of previous studies showed the possibility of obtaining a single form of regression dependence for calculations of the dissolution of hydrogen in liquid fuels. The processing of the literature data and the results of our own research gave a set of regression equations for calculating the solubility of hydrogen in liquid fuels: gas, diesel, fuel oil, LVGO, HVGO, GDAR, ABVB. The obtained regression dependencies show that with increasing average molecular weight the solubility of hydrogen in the fuel decreases. These regression dependencies make it possible to obtain baseline data for the design of fuel systems for supplying fuel and hydrogen mixtures to combustion chambers of heat engines. Studies of hydrogen-diesel have shown a decrease in the flash fuel temperature by 10 – 15 oC by comparison with pure fuel. For heavy fuels, this level of reduction of the fuel round is not sufficient. Therefore, it is necessary to conduct further studies on the intensification of the process of dissolution of hydrogen in heavy fuels. This will significantly reduce energy costs for the organization of the combustion process.


Author(s):  
Nirendra N. Mustafi ◽  
Robert R. Raine

Investigations on alternative fuels for internal combustion engines are regarded as one of the major research areas for the age. Engine simulation tools can play an important role in such investigations without performing the experimental works. It usually saves both time and money and provides better and additional understanding where the experimental facilities are limited. A spark ignition (SI) engine simulation tool (ISIS) is used in this present study to simulate the performance and emissions of SI engines, operated on alternative fuels such as biogas and “Powergas” (a synthesis gaseous fuel mixture of mainly carbon monoxide and hydrogen). An extended investigation is done for the oxides of nitrogen emissions considering multiple burn zones. The results are verified against those obtained for engine torque/brake power, exhaust temperature, and exhaust emissions experimentally and a good agreement is found between them.


Author(s):  
V. Matham ◽  
K. Majmudar ◽  
K. Aung

The use of alternative fuels such as natural gas (methane) in spark-ignition (SI) engines is beneficial to the environment as it reduces emissions of pollutants such as NOx from these engines with slight penalty on the performance. This paper investigated the use of methane and hydrogen/methane mixtures in an SI engine by numerical simulations. The numerical simulations were based on the models of finite heat release, cylinder heat transfer, pumping losses, and friction losses. Simulations were carried out to evaluate the effects of compression ratio, equivalence ratio, ignition timing, and engine speed on the performance of the SI engine. The results showed that the current model could satisfactorily predict the performance of an SI engine fueled by gaseous fuels.


2011 ◽  
Vol 145 (2) ◽  
pp. 73-81
Author(s):  
Jerzy LARISCH ◽  
Zdzisław STELMASIAK

The Department of Internal Combustion Engines and Vehicles, Technical University of Bielsko-Biala has carried out work on alternative fuels in the area of dual-fueling of SI engines. The paper presents the concept of dual fuel (alcohol and gasoline) MPI injected spark-ignition engine using a fuel mixing device. The solution consists in mixing the fuel (gasoline and alcohol) before or in the fuel rail, which ensures a variable share of alcohol in the mixture in the range from 0÷100%, depending on the engine operating conditions (engine revolutions and load), and its thermal state. The fuels are delivered to the mixing chamber through the solenoid valves that allow a proper selection of the proportion of alcohol and gasoline. The pre-prepared mixture is injected through the original injectors to the intake manifold, around the intake valve. This paper presents the prototype of the mixer that allows mixing of the gasoline and alcohol in any proportion using a PWM.


Author(s):  
Davide Tarsitano ◽  
Laura Mazzola ◽  
Federico Cheli ◽  
Ferdinando Mapelli

The use of road vehicles has always represented a major contribution to the growth of modern society: it facilitates goods and people mobility, meeting most of the daily needs and it represents a backbone for the development of world economy, (i.e. the industrial field). Nowadays, this mean of transportation, however, given the high number of vehicles on the roads, has a negative impact both on the environment and on the quality of human life. Moreover it leads to an increase in additional costs (i.e. the costs related to environment pollution, global warming and depletion of resources). Such a negative aspect is due to the fact that the drive systems are often characterized by high variability of the load, hence the propulsion system works in areas with low efficiencies and high pollutant emissions. In order to overcome these problems, and to allow the compliance of the road transport system with new European guidelines (i.e White paper, and Horizon 2020), it is necessary to develop innovative technologies able to: - increase the overall powertrain efficiency; - introduce a sustainable alternative fuels strategy including also the appropriate infrastructure; - reduce carbon emission through a decarbonisation approach; In this perspective, in recent years, the technology of electric and hybrid vehicles has been developed, and nowadays it has become a feasible solution in the context of means of transportation. Car/truck-makers and operators look at further developments and innovation in this field in order to optimise the existing solutions and reduce the production costs. The current solution for hybrid vehicles aims to couple a conventional engine with an electrical motor; these two propulsion system are coordinated by an opportune algorithm in order to let the conventional engine operate in its higher efficiency range. Hence the technology foresees the action of endothermic and electrical motors. It is then pivotal for the success of this transport the optimisation of the whole system (electrical and endothermic) in terms of efficiency, sizing and of the control algorithm that coordinate the two propulsion systems. For the modeling of the internal combustion engine conventional approaches, based on the numerical simulation of the combustion process, cannot be used because of their complexity in term of time needed for computing activity. For hybrid power train the general approach to simulated a drive cycle, that usually last at least a few minutes, is based on engine map approach [1–2]. The main burden to the described process is the identifications of maps of torque and consumption for the internal combustion engine, which are normally not predictable in detail, nor are provided by the manufacturers, but they can only be determined by means of experimental tests. Such a process can become extremely expensive and time consuming. Hence in this work the concept of virtual optimisation is introduced basing on the identification of torque and fuel consumption maps for internal combustion engines on analytical methods considering the similarities with engine of the same class. In this regard, a model of the system is developed based on the “Willans Line Method” approach, subsequently to a theoretical definition of the model, the identification of maps is carried out for two different engines (one diesel heavy-duty engine and one spark ignition engine) in order to consider the existing configurations of hybrid vehicles. Eventually the calculated maps are validated considering experimental data from existing experimental campaign. Providing the validity of the method and its usefulness in the hybrid vehicle design.


Author(s):  
D A Gillespie

In recent years intensive development of reciprocating internal combustion engines has led to progressively higher ratings with improved thermal efficiency and an ability to operate successfully on poorer quality fuels. Rising fuel costs have also led to an increasing interest in alternative fuels, and this in turn has promoted the design and development of engines capable of burning a variety of gases. The paper describes the design performance features and recent development achievements of a range of medium-speed gas-fed reciprocating engines with a capability to burn a range of gaseous fuels from natural gas down to synthetic or by-product gases with low calorific values of 4.85 MJ/m3(n).


2020 ◽  
Vol 180 ◽  
pp. 01010
Author(s):  
Cristian Sandu ◽  
Constantin Pană ◽  
Niculae Negurescu ◽  
Alexandru Cernat ◽  
Cristian Nuţu ◽  
...  

For conventional internal combustion engines alternative fuels such alcohols (ethanol, methanol and butanol) have attracted more attention. This aspect is due to the fact that alcohols have good combustion properties and high oxygen content. Butanol is a viable fuel for blending with conventional fuels such as gasoline or diesel because of its high miscibility with these conventional fuels. The high combustion speed of butanol compared to that of gasoline ensures a shorter burning process thus the engine thermal efficiency can potentially be improved. Moreover, the additional oxygen content of the alcohol n-butanol can potentially improve the combustion process and can lead to a reduction of carbon monoxide and unburnt hydrocarbons emissions level. Utilizing butanol-gasoline blends can provide a good solution for the reduction of greenhouse gases level (CO2) and pollutants level (CO, HC, and NOx). An experimental study was carried out in a spark ignition engine which was fueled with a blend of n-butanol-gasoline at different volume percentages. The objective of this paper is to determine the effects of butanol on the engine energetic performances and on the emissions (HC, CO and NOx). At first the engine fueled with pure gasoline to set up a reference at the engine load χ=55%, engine speed of n=2500 min-1 and different excess air coefficients (λ). After setting the reference the engine was fueled with butanol-gasoline blend (10% vol. butanol 90% vol. gasoline) with the same engine adjustments. At butanol use the CO, HC and CO2 emissions level decreased, but the NOx emission level increased. The butanol can be considered a good alternative fuel for the spark ignition engines without modifications.


Sign in / Sign up

Export Citation Format

Share Document