scholarly journals Ecological aspects of using mixtures of canola oil with n-hexane in diesel engine

2021 ◽  
Author(s):  
Rafał Longwic ◽  
Przemyslaw Sander ◽  
Dawid Tatarynow

The article discusses the results of research on the use of canola oil and canola oil with the addition of n-hexane in a compression-ignition engine. An engine with a Common Rail injection system was tested in real traffic conditions on the road and on a chassis dynamometer. The tested fuels were fed to the engine by an additional fuel supply system. An analysis of the effect of the addition of n-hexane on the emission of the main components of toxic exhaust gases was carried out. The proposed solution may contribute to extending the service life of currently used compression ignition engines due to the improvement of the ecological properties of this type of drive sources.

Mechanika ◽  
2021 ◽  
Vol 27 (6) ◽  
pp. 492-497
Author(s):  
Dariusz SZPICA ◽  
Marcin DZIEWIĄTKOWSKI

Further restrictions on the use of compression-ignition engines in transportation are prompting the search for adaptations to run on other fuels. One of the most popular alternative fuels is Compressed Natural Gas (CNG), which due to its low carbon content can be competitive with classical fuels. This paper presents the results of testing a Cummins 6BT compression ignition engine that has undergone numerous modifications to convert to CNG power. The sequential gas injection system and the ignition system were installed in this engine. The compression ratio was also lowered from 16.5 to 11.5 by replacing the pistons. Tests conducted on an engine dynamometer were to show the differences in emission and conversion in the catalyst of hydrocarbons contained in the exhaust gases. Two structurally different catalysts operating at different exhaust temperatures (400 and 500)±2.5°C were used. The catalyst operating at 500±2.5°C showed a 23.5% higher conversion rate than the catalyst operating at a lower temperature in the range of the speed range tested. Also the external indicators, such as power and torque for the case of higher operating temperature took values over 70% higher. The research is one of the stages of a comprehensive assessment of the possibility of adaptation of compression ignition engines to CNG-only fueling.


2019 ◽  
Vol 179 (4) ◽  
pp. 126-131
Author(s):  
Mariusz CHWIST ◽  
Karol GRAB-ROGALIŃSKI ◽  
Stanisław SZWAJA

Pyrolysis oil obtained from thermal biomass processing (torrefaction and pyrolysis) was used as an additional fuel for the compression-ignition engine equipped with a classic (non-common rail) injection system. The basic fuel used to the engine was regular diesel fuel. The tests were carried out with two content of pyrolysis oil in diesel fuel as follows: 10 and 20% by volume. In addition, the combustion process was investigated in the engine operating only on pyrolysis oil. The test results were based on a comparative analysis, where the diesel fuel was used as the reference fuel. The obtained results indicate that is a real possibility of co-combustion of pyrolysis oil with diesel fuel in the CI engine. On the other hand, a decrease in engine power resulting from the lower calorific value of pyrolysis oil and a greater unrepeatability of engine consecutive work cycles were observed.


2015 ◽  
Vol 163 (4) ◽  
pp. 47-56
Author(s):  
Łukasz KAPUSTA

In this study dual fuel direct injection was studied in terms of utilizing in compression ignition engines gaseous fuels with high octane number which are stored in liquid form, specifically liquid propane. Due to the fact that propane is not as much knock-resistant as natural gas, instead of conventional dual fuel system a system based on simultaneous direct injection of two fuel was selected as the most promissing one. Dual fuel operation was compared with pure diesel operation. The performed simulations showed huge potential of dual fuel system for burning light hydrocarbons in heavy duty compression ignition engines. However, further secondary fuel injection system optimization is required in order to improve atomization and lower the emissions.


2019 ◽  
Vol 179 (4) ◽  
pp. 52-57
Author(s):  
Michał GĘCA ◽  
Konrad PIETRYKOWSKI ◽  
Grzegorz BARAŃSKI

The article presents an analysis of the design of cooling liquid pumps for a compression-ignition aircraft engine. A 100 kW twin- charged, two-stroke, liquid-cooled engine has 3 cylinders and 6 opposed-pistons. In the first part of the study, the amount of heat needed to be removed by the cooling system was estimated to obtain the required volumetric flow rate. Then, the design of automotive cooling liquid pumps for compression-ignition engines with a Common Rail power supply system and power of about 100 kW was analyzed. The aim of the analysis was to select a suitable pump for applications in the aircraft compression-ignition engine. 5 constructions of different shape, diameter and width of the working rotor were selected. The pressure and volume flow rate were determined for a given rotational speed of the pump on a specially built stand. The operation maps of individual pumps were created to select the most efficient types of pumps.


2015 ◽  
Vol 77 (8) ◽  
Author(s):  
I. M. Yusri ◽  
M. K. Akasyah ◽  
R. Mamat ◽  
O. M. Ali

The use of biomass based renewable fuel, n-butanol blends for compression ignition (CI) engine has attracted wide attention due to its superior properties such as better miscibility, higher energy content, and cetane number as compared to other alternatives fuel. In this present study the use of n-butanol 10% blends (Bu10) with diesel fuel has been tested using multi-cylinder, 4-stroke engine with common rail direct injection system to investigate the combustion and emissions of the blended fuels. Based on the tested engine at BMEP=3.5Bar. Based on the results Bu10 fuel indicates lower first and second peak pressure by 5.4% and 2.4% for engine speed 1000rpm and 4.4% and 2.1% for engine speed 2500rpm compared to diesel fuel respectively. Percentage reduction relative to diesel fuel at engine speeds 1000rpm and 2500rpm for Bu10: Exhaust temperature was 7.5% and 5.2% respectively; Nitrogen oxides (NOx) 73.4% and 11.3% respectively.


1932 ◽  
Vol 36 (261) ◽  
pp. 733-787 ◽  
Author(s):  
C. B. Dicksee

In this paper the author does not propose to deal with any particular form or type of engine or fuel-injection system, but to discuss some of the problems which are encountered when engaged on the development of a high-speed compression-ignition engine.The main problems to be solved consist in devising suitable means for utilising to the fullest possible extent the oxygen available within the cylinder and for avoiding the production of smoke and noise and, in so far as it is connected with combustion conditions, smell.


Author(s):  
Gong Chen

It is always desirable for a heavy-duty compression-ignition engine, such as a diesel engine, to possess a capability of using alternate liquid fuels without significant hardware modification to the engine baseline. Because fuel properties vary between various types of liquid fuels, it is important to understand the impact and effects of the fuel properties on engine operating and output parameters. This paper intends and attempts to achieve that understanding and to predict the qualitative effects by studying analytically and qualitatively how a heavy-duty compression-ignition engine would respond to the variation of fuel properties. The fuel properties considered in this paper mainly include the fuel density, compressibility, heating value, viscosity, cetane number, and distillation temperature range. The qualitative direct and end effects of the fuel properties on engine bulk fuel injection, in-cylinder combustion, and outputs are analyzed and predicted. Understanding these effects can be useful in analyzing and designing a compression-ignition engine for using alternate liquid fuels.


Sign in / Sign up

Export Citation Format

Share Document