scholarly journals Thermal efficiency investigations on the self-ignition test engine fed with marine low sulfur diesel fuels

2019 ◽  
Vol 178 (3) ◽  
pp. 15-19
Author(s):  
Zbigniew KORCZEWSKI

Within the article an issues of implementing the new kinds of marine diesel fuels into ships’ operation was described taking into ac-count restrictions on the permissible sulphur content introduced by the International Maritime Organization. This is a new situation for ship owners and fuel producers, which forces the necessity to carry out laboratory research tests on especially adapted engine stands. How to elaborate the method enabling quality assessment of the self-ignition engine performance, considered in three categories: ener-gy, emission and reliability, represents the key issue of the organization of such research. In the field of energy research, it is necessary to know the thermal efficiency of the engine as the basic comparative parameter applied in diagnostic analyzes and syntheses of sequen-tially tested marine diesel fuels. This type of scientific research has been worked out for two years in the Department of Marine and Land Power Plants of the Gdańsk University of Technology, as a part of the statutory activities conducted in cooperation with the Regional Fund for Environmental Protection in Gdansk and the LOTOS Group oil company. This article presents the algorithm and results of thermal efficiency calculations of the Farymann Diesel D10 test engine in the con-ditions of feeding with various low-sulfur marine diesel fuels: distillation and residual fuels. This parameters stands for one of ten diag-nostic measures of the ranking of energy and emission quality of newly manufactured marine diesel fuels being built at the Department.

Author(s):  
Valentin Soloiu ◽  
Martin Muiños ◽  
Tyler Naes ◽  
Spencer Harp ◽  
Marcis Jansons

In this study, the combustion and emissions characteristics of Reactivity Controlled Compression Ignition (RCCI) obtained by direct injection (DI) of S8 and port fuel injection (PFI) of n-butanol were compared with RCCI of ultra-low sulfur diesel #2 (ULSD#2) and PFI of n-butanol at 6 bar indicated mean effective pressure (IMEP) and 1500 rpm. S8 is a synthetic paraffinic kerosene (C6–C18) developed by Syntroleum and is derived from natural gas. S8 is a Fischer-Tropsch fuel that contains a low aromatic percentage (0.5 vol. %) and has a cetane number of 63 versus 47 of ULSD#2. Baselines of DI conventional diesel combustion (CDC), with 100% ULSD#2 and also DI of S8 were conducted. For both RCCI cases, the mass ratio of DI to PFI was set at 1:1. The ignition delay for the ULSD#2 baseline was found to be 10.9 CAD (1.21 ms) and for S8 was shorter at 10.1 CAD (1.12 ms). In RCCI, the premixed charge combustion has been split into two regions of high temperature heat release, an early one BTDC from ignition of ULSD#2 or S8, and a second stage, ATDC from n-butanol combustion. RCCI with n-butanol increased the NOx because the n-butanol contains 21% oxygen, while S8 alone produced 30% less NOx emissions when compared to the ULSD#2 baseline. The RCCI reduced soot by 80–90% (more efficient for S8). However, S8 alone showed a considerable increase in soot emissions compared with ULSD#2. The indicated thermal efficiency was the highest for the ULSD#2 and S8 baseline at 44%. The RCCI strategies showed a decrease in indicated thermal efficiency at 40% ULSD#2-RCCI and 42% and for S8-RCCI, respectively. S8 as a single fuel proved to be a very capable alternative to ULSD#2 in terms of combustion performance nevertheless, exhibited higher soot emissions that have been mitigated with the RCCI strategy without penalty in engine performance.


Author(s):  
Seiichi Shiga ◽  
Kenji Nishida ◽  
Shizuo Yagi ◽  
Youichi Miyashita ◽  
Yoshiharu Yuzawa ◽  
...  

This paper presents further investigation into the effect of over-expansion cycle with late-closing of intake valves on the engine performance in gasoline engines. A larger single-cylinder test engine with the stroke volume of 650 cc was used with four kinds of expansion ratio (geometrical compression ratio) from 10 to 25 and four sets of intake valve closure (I.V.C.) timings from 0 to 110 deg C.A. ABDC. Late-closing has an effect of decreasing the pumping work due to the reduction of intake vacuum, althogh higher expansion ratio increases the friction work due to the average cylinder pressure level. Combining the higher expansion ratio with the late-closing determines the mechanical efficiency on the basis of these two contrastive effects. The indicated thermal efficiency is mostly determined by the expansion ratio and little affected by the nominal compression ratio. The value of the indicated thermal efficiency reaches to 48% at most which is almost comparable with the value of diesel engines. The improvement of both indicated and brake thermal efficiency reaches to 16% which is much higher than ever reported by the authors. A simple thermodynamic calculation could successfully explain the behavior of the indicated thermal efficiency. The brake thermal efficiency could also be improved due to the increase in both mechanical and indicated efficiencies.


2021 ◽  
Author(s):  
Zbigniew Korczewski

The key metrological issue of substance and energy balance in research engines is the precise determination of the ele-mental composition of the applied fuel and its net calorific value. This makes it possible to calculate the amount of heat brought with the fuel into the combustion chamber, as well as the amount and gas composition of the exhaust. However, to fully assess the energy quality of the fuel used, its ignition properties should also be estimated. They determine the combustion kinetics and, consequently, the course of gas pressure alterations and heat release in the cylinder, which have a direct impact on the indicated power and thermal efficiency of the engine. This article presents the methodology for carrying out this type of laboratory tests and their representative results con-cerning six different low-sulfur marine fuels used to feed marine engines at present. The considerations focus mainly on measurement technology, as well as the measuring apparatus applied today. Additionally some existing metrological difficulties that might be met were shortly described. The laboratory tests in question stand for the first stage of the program of testing a new kind of low-sulfur marine fuels in real operating conditions of a diesel engine, which was carried out at the Department of Ship Power Plants of the Gdańsk University of Technology.


2019 ◽  
Vol 26 (1) ◽  
pp. 153-161 ◽  
Author(s):  
Zhiyuan Yang ◽  
Qinming Tan ◽  
Peng Geng

Abstract With the implementation and expansion of international sulfur emission control areas, effectively promoted the marine low sulfur diesel fuel (MLSDF) used in marine diesel engines. In this study, a large low-speed, two-stroke, cross-head, common rail, electronic fuel injection marine diesel engine (B&W 6S35ME-B9) was used for the study. According to diesel engine’s propulsion characteristics, experiments were launched respectively at 25%, 50%, 75%, 100% load working conditions with marine low sulfur diesel fuel to analyze the fuel consumption, combustion characteristics and emissions (NOx, CO2, CO, HC) characteristics. The results showed that: Marine diesel engine usually took fuel injection after top dead center to ensure their safety control NOx emission. From 25% to 75% load working condition, engine’s combustion timing gradually moved forward and the inflection points of pressure curve after top dead center also followed forward. While it is necessary to control pressure and reduce NOx emission by delaying fuel injection timing at 100% load. Engine’s in-cylinder pressure, temperature, and cumulative heat release were increased with load increasing. Engine’s CO2 and HC emissions were significantly reduced from 25% to 75% load, while they were increased slightly at 100% load. Moreover, the fuel consumption rate had a similar variation and the lowest was only 178 g/kW·h at 75% load of the test engine with MLSDF. HC or CO emissions at four tests’ working conditions were below 1.23 g/kW·h and the maximum difference was 0.2 or 0.4 g/kW·h respectively, which meant that combustion efficiency of the test engine with MLSDF is good. Although the proportion of NOx in exhaust gas increased with engine’s load increasing, but NOx emissions were always between 12.5 and 13.0 g/kW·h, which was less than 14.4 g/kW·h. Thus, the test engine had good emissions performance with MLSDF, which could meet current emission requirements of the International Maritime Organization.


Fuel ◽  
2021 ◽  
Vol 292 ◽  
pp. 120257
Author(s):  
Igor M.A. Uchôa ◽  
Marcell S. Deus ◽  
Eduardo L. Barros Neto

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1051
Author(s):  
Jungmo Oh ◽  
Kichol Noh ◽  
Changhee Lee

The Atkinson cycle, where expansion ratio is higher than the compression ratio, is one of the methods used to improve thermal efficiency of engines. Miller improved the Atkinson cycle by controlling the intake- or exhaust-valve closing timing, a technique which is called the Miller cycle. The Otto–Miller cycle can improve thermal efficiency and reduce NOx emission by reducing compression work; however, it must compensate for the compression pressure and maintain the intake air mass through an effective compression ratio or turbocharge. Hence, we performed thermodynamic cycle analysis with changes in the intake-valve closing timing for the Otto–Miller cycle and evaluated the engine performance and Miller timing through the resulting problems and solutions. When only the compression ratio was compensated, the theoretical thermal efficiency of the Otto–Miller cycle improved by approximately 18.8% compared to that of the Otto cycle. In terms of thermal efficiency, it is more advantageous to compensate only the compression ratio; however, when considering the output of the engine, it is advantageous to also compensate the boost pressure to maintain the intake air mass flow rate.


Author(s):  
Alexey Dragunov ◽  
Eugene Saltanov ◽  
Igor Pioro ◽  
Pavel Kirillov ◽  
Romney Duffey

It is well known that the electrical-power generation is the key factor for advances in any other industries, agriculture and level of living. In general, electrical energy can be generated by: 1) non-renewable-energy sources such as coal, natural gas, oil, and nuclear; and 2) renewable-energy sources such as hydro, wind, solar, biomass, geothermal and marine. However, the main sources for electrical-energy generation are: 1) thermal - primary coal and secondary natural gas; 2) “large” hydro and 3) nuclear. The rest of the energy sources might have visible impact just in some countries. Modern advanced thermal power plants have reached very high thermal efficiencies (55–62%). In spite of that they are still the largest emitters of carbon dioxide into atmosphere. Due to that, reliable non-fossil-fuel energy generation, such as nuclear power, becomes more and more attractive. However, current Nuclear Power Plants (NPPs) are way behind by thermal efficiency (30–42%) compared to that of advanced thermal power plants. Therefore, it is important to consider various ways to enhance thermal efficiency of NPPs. The paper presents comparison of thermodynamic cycles and layouts of modern NPPs and discusses ways to improve their thermal efficiencies.


Author(s):  
Y Ren ◽  
Z H Huang ◽  
D M Jiang ◽  
L X Liu ◽  
K Zeng ◽  
...  

The performance and emissions of a compression ignition engine fuelled with diesel/dimethoxymethane (DMM) blends were studied. The results showed that the engine's thermal efficiency increased and the diesel equivalent brake specific fuel consumption (b.s.f.c.) decreased as the oxygen mass fraction (or DMM mass fraction) of the diesel/DMM blends increased. This change in the diesel/DMM blends was caused by an increased fraction of the premixed combustion phase, an oxygen enrichment, and an improvement in the diffusive combustion phase. A remarkable reduction in the exhaust CO and smoke can be achieved when operating on the diesel/DMM blend. Flat NO x/smoke and thermal efficiency/smoke curves are presented when operating on the diesel/DMM fuel blends, and a simultaneous reduction in both NO x and smoke can be realized at large DMM addition. Thermal efficiency and NO x give the highest value at 2 per cent oxygen mass fraction (or 5 per cent DMM volume fraction) for the combustion of diesel/DMM blends.


Author(s):  
Ioannis Vlaskos ◽  
Ennio Codan ◽  
Nikolaos Alexandrakis ◽  
George Papalambrou ◽  
Marios Ioannou ◽  
...  

The paper describes the design process for a controlled pulse turbocharging system (CPT) on a 5 cylinder 4-stroke marine engine and highlights the potential for improved engine performance as well as reduced smoke emissions under steady state and transient operating conditions, as offered by the following technologies: • controlled pulse turbocharging, • high pressure air injection onto the compressor impeller as well as into the air receiver, and • an electronic engine control system, including a hydraulic powered electric actuator. Calibrated engine simulation computer models based on the results of tests performed on the engine in its baseline configuration were used to design the CPT components. Various engine tests with CPT under steady state and transient operating conditions show the engine optimization process and how the above-mentioned technologies benefit engine behavior in both generator and propeller law operation.


2021 ◽  
pp. 146808742110692
Author(s):  
Zhenyu Shen ◽  
Yanjun Li ◽  
Nan Xu ◽  
Baozhi Sun ◽  
Yunpeng Fu ◽  
...  

Recently, the stringent international regulations on ship energy efficiency and NOx emissions from ocean-going ships make energy conservation and emission reduction be the theme of the shipping industry. Due to its fuel economy and reliability, most large commercial vessels are propelled by a low-speed two-stroke marine diesel engine, which consumes most of the fuel in the ship. In the present work, a zero-dimensional model is developed, which considers the blow-by, exhaust gas bypass, gas exchange, turbocharger, and heat transfer. Meanwhile, the model is improved by considering the heating effect of the blow-by gas on the intake gas. The proposed model is applied to a MAN B&W low-speed two-stroke marine diesel engine and validated with the engine shop test data. The simulation results are in good agreement with the experimental results. The accuracy of the model is greatly improved after considering the heating effect of blow-by gas. The model accuracy of most parameters has been improved from within 5% to within 2%, by considering the heating effect of blow-by gas. Finally, the influence of blow-by area change on engine performance is analyzed with considering and without considering the heating effect of blow-by.


Sign in / Sign up

Export Citation Format

Share Document