RCCI of Synthetic Kerosene With PFI of N-Butanol-Combustion and Emissions Characteristics

Author(s):  
Valentin Soloiu ◽  
Martin Muiños ◽  
Tyler Naes ◽  
Spencer Harp ◽  
Marcis Jansons

In this study, the combustion and emissions characteristics of Reactivity Controlled Compression Ignition (RCCI) obtained by direct injection (DI) of S8 and port fuel injection (PFI) of n-butanol were compared with RCCI of ultra-low sulfur diesel #2 (ULSD#2) and PFI of n-butanol at 6 bar indicated mean effective pressure (IMEP) and 1500 rpm. S8 is a synthetic paraffinic kerosene (C6–C18) developed by Syntroleum and is derived from natural gas. S8 is a Fischer-Tropsch fuel that contains a low aromatic percentage (0.5 vol. %) and has a cetane number of 63 versus 47 of ULSD#2. Baselines of DI conventional diesel combustion (CDC), with 100% ULSD#2 and also DI of S8 were conducted. For both RCCI cases, the mass ratio of DI to PFI was set at 1:1. The ignition delay for the ULSD#2 baseline was found to be 10.9 CAD (1.21 ms) and for S8 was shorter at 10.1 CAD (1.12 ms). In RCCI, the premixed charge combustion has been split into two regions of high temperature heat release, an early one BTDC from ignition of ULSD#2 or S8, and a second stage, ATDC from n-butanol combustion. RCCI with n-butanol increased the NOx because the n-butanol contains 21% oxygen, while S8 alone produced 30% less NOx emissions when compared to the ULSD#2 baseline. The RCCI reduced soot by 80–90% (more efficient for S8). However, S8 alone showed a considerable increase in soot emissions compared with ULSD#2. The indicated thermal efficiency was the highest for the ULSD#2 and S8 baseline at 44%. The RCCI strategies showed a decrease in indicated thermal efficiency at 40% ULSD#2-RCCI and 42% and for S8-RCCI, respectively. S8 as a single fuel proved to be a very capable alternative to ULSD#2 in terms of combustion performance nevertheless, exhibited higher soot emissions that have been mitigated with the RCCI strategy without penalty in engine performance.

Author(s):  
Valentin Soloiu ◽  
Jose Moncada ◽  
Remi Gaubert ◽  
Spencer Harp ◽  
Kyle Flowers ◽  
...  

Jet-A was investigated in RCCI (Reactivity Controlled Compression Ignition) given that the fuel is readily available and has a similar cetane number compared to ultra-low sulfur diesel (ULSD#2). To promote emissions’ control, RCCI was conducted with direct injection (DI) of Jet-A and PFI (port fuel injection) of n-butanol. Combustion and emission characteristics of Jet-A RCCI were investigated for a medium duty DI experimental engine operated at constant boost and 30% EGR rate and compared to ULSD#2 RCCI and single-fuel ULSD#2 operation. DI fuel was injected at 5 CAD ATDC and constant rail pressure of 1500 bar. A 20% pilot by mass was added and investigated at timings from 15 to 5 CAD BTDC for combustion stability. The results showed that the effect of the pilot injection on Jet-A combustion was not as prominent as compared to that of ULSD#2, suggesting a slightly different spray and mixture formation. Ignition delay for Jet-A was 15–20% shorter compared to ULSD#2 in RCCI. When the pilot was set to 5 CAD BTDC, CA50 phased for ULSD#2 RCCI by 3 CAD later when compared to Jet-A RCCI. After TDC, the local pressure maximum for ULSD#2 RCCI decreased by 3 bar, resulting from a 15% difference in peak heat release rate between ULSD#2 and Jet-A in RCCI at the same pilot timing. NOx and soot levels were reduced by a respective maximum of 35% and 80% simultaneously in Jet-A RCCI mode compared to single-fuel ULSD#2, yet, were higher compared to ULSD#2 RCCI. Ringing intensity was maintained at similar levels and energy specific fuel consumption (ESFC) improved by at least 15% for Jet-A compared to ULSD#2 in RCCI. Mechanical efficiencies additionally improved at earlier pilot timing by 2%. In summary, Jet-A RCCI allowed for emissions control and increased fuel efficiencies compared to single fuel ULSD#2, however, injection should be further tweaked in order to reach lower soot levels.


Author(s):  
Valentin Soloiu ◽  
Cesar E. Carapia ◽  
Justin T. Wiley ◽  
Jose Moncada ◽  
Remi Gaubert ◽  
...  

Abstract The focus of this study is to reduce harmful NOx and soot emissions of a compression ignition (CI) engine using reactivity-controlled compression ignition (RCCI) with n-Butanol. RCCI was achieved with the port fuel injection (PFI) of a low reactivity fuel, n-butanol, and a direct injection (DI) of the highly reactive fuel ULSD #2 (Ultra Low Sulfur Diesel) into the combustion chamber. The reactivity, ID, and CD where determined using a Constant Volume Combustion Chamber (CVCC) where ID for n-butanol was found to be 15 times slower than ULSD. The emissions and combustion analysis was conducted at 1500 RPM at an experimental low engine load of 4 bar IMEP; the baseline for emissions comparison was conducted using conventional diesel combustion (CDC) with an injection timing of 16° BTDC at a rail pressure of 800 bar. RCCI was conducted utilizing 75% by mass PFI of n-butanol with 25% ULSD DI, showed a simultaneous reduction of both NOx and soot emissions at a rate of 96.2% and 98.7% respectively albeit with an increase in UHC emissions by a factor of 5. Ringing Intensity was also significantly reduced for Bu75ULSD25 (RCCI Experiment) with a reduction of 62.1% from CDC.


Author(s):  
Valentin Soloiu ◽  
Jabeous Weaver ◽  
Henry Ochieng ◽  
Marvin Duggan ◽  
Sherwin Davoud ◽  
...  

This study investigates the combustion characteristics of cotton seed fatty acid methyl esters (FAME), with C100 (100% cotton seed biodiesel) and C20 (20% cotton seed biodiesel, 80% ultra-low sulfur diesel #2), in a direct injection diesel engine and compares the results with ultra-low sulfur diesel #2 (ULSD#2). The dynamic viscosity of C100 was found to meet the American Society for Testing and Materials (ASTM) standard. The lower heating value obtained for C100 was 37.7 MJ/kg, compared to 42.7 MJ/kg for ULSD#2. ULSD#2 and C100 displayed ignition delays of 9.6 crank angle degrees (CAD) and 7 CAD representing 1.14 ms and 0.83 ms respectively and a combustion time of 4ms (35 CAD) at 1400 rpm and 8 bar indicated mean effective pressure (IMEP) (100% load). The apparent heat release of the tested fuels at 8 bar IMEP showed both a premixed and diffusion phase and produced maximum values of 122 and 209 J/CAD for C100 and ULSD#2 respectively, with a decreasing trend occurring with increase in percentage of FAME. The 50% mass burnt (CA50) for 100% biodiesel was found to be 3 CAD advanced, compared with ULSD#2. The maximum total heat flux rates showed a value of 3.2 MW/m2 for ULSD#2 at 8 bar IMEP with a 6% increase observed for C100. Mechanical efficiency of ULSD#2 was 83% and presented a 5.35% decrease for C100, while the overall efficiency was 36% for ULSD#2 and 33% for C100 at 8 bar IMEP. The nitrogen oxides (NOx) for C100 presented an 11% decrease compared with ULSD#2. Unburned hydrocarbons value (UHC) for ULSD#2 was 2.8 g/kWh at 8 bar IMEP, and improved by 18% for C100. The carbon monoxide (CO) emissions for C100 decreased by 6% when compared to ULSD#2 at 3 bar IMEP but were relatively constant at 8 bar IMEP, presenting a value of 0.82 g/kWh for both fuels. The carbon dioxide (CO2) emissions for C100 increased by 1% compared with ULSD#2, at 3 bar IMEP. The soot value for ULSD#2 was 1.5 g/kWh and presented a 42% decrease for C100 at 8 bar IMEP. The results suggest a very good performance of cotton seed biodiesel, even at very high content of 100%, especially on the emissions side that showed decreasing values for regulated and non-regulated species.


Author(s):  
Xiaoye Han ◽  
Kelvin Xie ◽  
Jimi Tjong ◽  
Ming Zheng

Diesel low temperature combustion (LTC) is capable of producing diesel-like efficiency while emitting ultra-low nitrogen oxides (NOx) and soot emissions. Previous work indicates that well-controlled single-shot injection with exhaust gas recirculation (EGR) is an operative way of achieving diesel LTC from low to mid engine loads. However, as the engine load is increased, demanding intake boost and injection pressure are necessary to suppress high soot emissions during the transition to LTC. The use of volatile fuels such as ethanol is deemed capable of promoting the cylinder charge homogeneity, which helps to overcome the high soot challenge and, thus, potentially expand the engine LTC load range. In this work, LTC investigations were carried out on a high compression ratio (18.2:1) engine. Engine tests were first conducted with diesel and LTC operation at 8 bar indicated mean effective pressure (IMEP) was enabled by sophisticated control of the injection pressure, injection timing, intake boost, and EGR application. The engine performance was characterized as the baseline, and the challenges were identified. Further tests were aimed to improve the engine performance against these baseline results. Experiments were, hence, conducted on the same engine with secondary ethanol port fuelling (PF). Single-shot diesel direct injection (DI) was applied close to top dead center (TDC) to ignite the ethanol and control the combustion phasing. The control sensitivity was studied through injection timing sweeps and EGR sweeps. Additional tests were performed to investigate the ethanol-to-diesel ratio effects on the mixture reactivity and the engine emissions. Engine load was also raised to 16.4 bar IMEP while keeping the simultaneously low NOx and soot emissions. Significant improvement of engine control and emissions was achieved by the DI+PF strategy.


Author(s):  
Xiaoye Han ◽  
Tongyang Gao ◽  
Usman Asad ◽  
Kelvin Xie ◽  
Ming Zheng

Diesel low temperature combustion (LTC) is capable of producing diesel-like efficiency while emitting ultra-low nitrogen oxides (NOx) and soot emissions. Previous work indicates that well controlled single-shot injection with exhaust gas recirculation (EGR) is an operative way of achieving diesel LTC from low to mid engine loads. However, as the engine load is increased, demanding intake boost and injection pressure are necessary to suppress high soot emissions during the transition to LTC. The use of volatile fuels such as ethanol are deemed capable of promoting the cylinder charge homogeneity, which helps to overcome the high soot challenge and thus potentially expand the engine LTC load range. In this work, LTC investigations have been carried out on a high compression ratio (18.2:1) engine. The engine was firstly fuelled with diesel, and LTC operation at 8 bar indicated mean effective pressure (IMEP) was enabled by sophisticated control of the injection pressure, injection timing, intake boost and EGR application. The engine performance was characterized as the baseline, and the challenges were identified. Further tests were aimed to improve the engine performance against these baseline results. Experiments were hence conducted on the same engine with secondary ethanol port injection (PI). Single-shot diesel direct injection (DI) was applied close to top dead center (TDC) to ignite the ethanol and control the combustion phasing. The control sensitivity has been studied through injection timing sweeps and EGR sweeps. Additional tests were performed to investigate the ethanol-to-diesel ratio effects on the mixture reactivity and the engine emissions. Engine load was also raised to 10 bar IMEP while keeping the simultaneously low NOx and soot emissions. Significant improvement of engine control and emissions was achieved by the DI+PI strategy.


2019 ◽  
Vol 178 (3) ◽  
pp. 15-19
Author(s):  
Zbigniew KORCZEWSKI

Within the article an issues of implementing the new kinds of marine diesel fuels into ships’ operation was described taking into ac-count restrictions on the permissible sulphur content introduced by the International Maritime Organization. This is a new situation for ship owners and fuel producers, which forces the necessity to carry out laboratory research tests on especially adapted engine stands. How to elaborate the method enabling quality assessment of the self-ignition engine performance, considered in three categories: ener-gy, emission and reliability, represents the key issue of the organization of such research. In the field of energy research, it is necessary to know the thermal efficiency of the engine as the basic comparative parameter applied in diagnostic analyzes and syntheses of sequen-tially tested marine diesel fuels. This type of scientific research has been worked out for two years in the Department of Marine and Land Power Plants of the Gdańsk University of Technology, as a part of the statutory activities conducted in cooperation with the Regional Fund for Environmental Protection in Gdansk and the LOTOS Group oil company. This article presents the algorithm and results of thermal efficiency calculations of the Farymann Diesel D10 test engine in the con-ditions of feeding with various low-sulfur marine diesel fuels: distillation and residual fuels. This parameters stands for one of ten diag-nostic measures of the ranking of energy and emission quality of newly manufactured marine diesel fuels being built at the Department.


Author(s):  
R Murugan ◽  
D Ganesh ◽  
G Nagarajan

Previous studies on reactivity controlled compression ignition combustion indicated that, reducing the hydrocarbon and carbon monoxide emissions at low load conditions still remains a challenge because of lower in-cylinder temperatures due to lower global reactivity gradient and reduced oxidation process. Research in this direction has not been reported so far and with this motivation, an attempt has been made to increase the global reactivity gradient and oxidation of fuel–air mixture by converting the low reactivity fuel methanol into medium reactivity fuel. This is achieved by mixing high octane oxygenated fuel, methanol (Octane Number: 110), with an oxygenated better cetane and volatility fuels like polyoxymethylene dimethyl ether (Cetane Number: 78) and isobutanol (Cetane Number: 15). The medium reactivity fuel with multiple direct injection of diesel fuel timed the combustion of dual fuel–air mixture to avoid too late or too advanced combustion which are the prime factors in controlling the unburnt emissions in a low temperature combustion process. Four medium reactivity fuel samples, M80IB20, M60IB40, M90P10, and M80P20, on percentage volume basis have been prepared and tested on the modified on-road three-cylinder turbocharged common rail direct injection diesel engine to demonstrate higher indicated thermal efficiency and potential reduction in unburnt and oxides of nitrogen/particulate matter emissions from reactivity controlled compression ignition combustion. Experimental results show that, use of medium reactivity fuel with optimized diesel injection strategy resulted in 66% decrease in hydrocarbon emission and 74% decrease in carbon monoxide emission by enhancing the oxidation of fuel–air mixture at lower temperatures which is evidently noticed in the combustion characteristics. Further reduction in hydrocarbon and carbon monoxide emission of about 90% has been achieved by integrating the diesel oxidation catalyst with the engine.


2020 ◽  
pp. 146808742093173 ◽  
Author(s):  
Avilash Jain ◽  
Anand Krishnasamy ◽  
Pradeep V

One of the major limitations of reactivity controlled compression ignition is higher unburned hydrocarbon and carbon monoxide emissions and lower thermal efficiency at part load operating conditions. In the present study, a combined numerical approach using a commercial three-dimensional computational fluid dynamics code CONVERGE along with artificial neural network and genetic algorithm is presented to address the above limitation. A production light-duty diesel engine is modified to run in reactivity controlled compression ignition by replacing an existing mechanical fuel injection system with a flexible electronic port fuel injection and common rail direct injection systems. The injection schedules of port fuel injection and direct injection injectors are controlled using National Instruments port and direct injection driver modules. Upon validation of combustion and emission parameters, parametric investigations are carried out to establish the effects of direct-injected diesel fuel timing start of injection (SOI), premixed fuel ratio and intake charge temperature on the engine performance and emissions in reactivity controlled compression ignition. The results obtained show that the start of injection timing and intake charge temperature significantly influence combustion phasing, while the premixed fuel ratio controls mixture reactivity and combustion quality. By utilizing the data generated with the validated computational fluid dynamics models, the artificial neural network models are trained to predict the engine exhaust emissions and efficiency. The artificial neural network models for gross indicated efficiency and oxides of nitrogen (NOx) are then coupled with genetic algorithm to maximize gross indicated efficiency while keeping the NOx and soot emissions within Euro VI emission limits. By optimizing the start of injection timing, premixed fuel ratio and intake charge temperature simultaneously using the artificial neural network models coupled with genetic algorithm, 19% improvement in gross indicated efficiency, 60% and 64% reduction in hydrocarbon and carbon monoxide emissions, respectively, are obtained in reactivity controlled compression ignition compared to the baseline case.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2644 ◽  
Author(s):  
Norhidayah Mat Taib ◽  
Mohd Radzi Abu Mansor ◽  
Wan Mohd Faizal Wan Mahmood

Blending diesel with biofuels, such as ethanol and palm oil methyl ester (PME), enhances the fuel properties and produces improved engine performance and low emissions. However, the presence of ethanol, which has a small cetane number and low heating value, reduces the fuel ignitability. This work aimed to study the effect of injection strategies, compression ratio (CR), and air intake temperature (Ti) modification on blend ignitability, combustion characteristics, and emissions. Moreover, the best composition of diesel–ethanol–PME blends and engine modification was selected. A simulation was also conducted using Converge CFD software based on a single-cylinder direct injection compression ignition Yanmar TF90 engine parameter. Diesel–ethanol–PME blends that consist of 10% ethanol with 40% PME (D50E10B40), D50E25B25, and D50E40B10 were selected and conducted on different injection strategies, compression ratios, and intake temperatures. The results show that shortening the injection duration and increasing the injected mass has no significant effect on ignition. Meanwhile, advancing the injection timing improves the ignitability but with weak ignition energy. Therefore, increasing the compression ratio and ambient temperature helps ignite the non-combustible blends due to the high temperature and pressure. This modification allowed the mixture to ignite with a minimum CR of 20 and Ti of 350 K. Thus, blending high ethanol contents in a diesel engine can be applied by advancing the injection, increasing the CR, and increasing the ambient temperature. From the emission comparison, the most suitable mixtures that can be operated in the engine without modification is D50E25B25, and the most appropriate modification on the engine is by increasing the ambient temperature at 350 K.


2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Nikhil Sharma ◽  
Avinash Kumar Agarwal

Abstract Fuel availability, global warming, and energy security are the three main driving forces, which determine suitability and long-term implementation potential of a renewable fuel for internal combustion engines for a variety of applications. Comprehensive engine experiments were conducted in a single-cylinder gasoline direct injection (GDI) engine prototype having a compression ratio of 10.5, for gaining insights into application of mixtures of gasoline and primary alcohols. Performance, emissions, combustion, and particulate characteristics were determined at different engine speeds (1500, 2000, 2500, 3000 rpm), different fuel injection pressures (FIP: 40, 80, 120, 160 bars) and different test fuel blends namely 15% (v/v) butanol, ethanol, and methanol blended with gasoline, respectively (Bu15, E15, and M15) and baseline gasoline at a fixed (optimum) spark timing of 24 deg before top dead center (bTDC). For a majority of operating conditions, gasohols exhibited superior characteristics except minor engine performance penalty. Gasohols therefore emerged as serious candidate as a transitional renewable fuel for utilization in the existing GDI engines, without requirement of any major hardware changes.


Sign in / Sign up

Export Citation Format

Share Document