scholarly journals MODELLING APPROACH IN THE DEVELOPMENT OF ELECTROCHEMICAL 3D-PRINTING SYSTEMS

Author(s):  
Georgyi S. Vasiliev ◽  
Dmytro Yu. Ushchapovskyi ◽  
Victoria I. Vorobyova ◽  
Olga V. Linyucheva

Background. New 3D-printing technologies are becoming more and more advanced and widespread in the twenty-first century. One of the types of 3D-printing is electrochemical 3D-printing, in which electrochemical deposition of metals is used to form metal products. Potentially, this method of 3D-printing is the most energy efficient, the least material-intensive, and also the easiest to implement. There- fore, research aimed at creating and improving systems for electrochemical 3D-printing is promising. Objective. The aim of the paper is to study the influence of geometric parameters of the system and the composition of the elec trolyte on the current distribution on the surface of the working electrode (cathode) in the process of electrochemical 3D-printing, and therefore print accuracy. Methods. Volt-amperometric measurements and multi-physical computer modelling of the secondary distribution of current density using COMSOL MULTYPHYSICS for different geometric parameters of the working part of the 3D-printer and different composition of electrolytes. Results. Based on the simulation of the secondary distribution of current density in copper sulphate electrolyte, it was found that the content of sulfuric acid in the solution should be minimal in order to purposefully deposit metal in the area directly under the working electrode. Based on the condition of maximum energy efficiency and accuracy of electrochemical 3D-printing, the optimal ratio between the deposition surface (cathode) and the edge of the non-conductive body of working electrode was found. Conclusions. It was established that in order to narrow the zone of current scattering (increase the accuracy of electrochemical 3D-printing) it is necessary to ensure the optimal ratio between the diameter of the capillary and the edge of the non-conductive body of the counter electrode. It was shown that this ratio should not be less than 5 [mm / mm]. Further applied research will be aimed at adaptation and practical implementation of the obtained model data, optimization of the electrolyte composition and design of the 3D-printer.

Author(s):  
Vokulova Yu.A. Vokulova ◽  
E.N. Zhulev

This article presents the results of studying the dimensional accuracy of the bases of complete removable prostheses made using a 3D printer and the traditional method. Bases of complete removable prostheses were made using an intraoral laser scanner iTero Cadent (USA) and a 3D printer Asiga Max UV (Australia). To study the dimensional accuracy of the bases of complete removable prostheses, we used the DentalCAD 2.2 Valletta software. The Nonparametric Wilcoxon W-test was used for statistical analysis of the obtained data. We found that the average value of the difference with the standard for bases made using digital technologies is 0.08744±0.0484 mm. The average value of the difference with the standard for bases made by the traditional method is 0.5654±0.1611 mm. Based on these data, we concluded that the bases of complete removable prostheses made using modern digital technologies (intraoral laser scanning and 3D printer) have a higher dimensional accuracy compared to the bases of complete removable prostheses made using the traditional method with a significance level of p<0.05 (Wilcoxon's W-test=0, p=0.031). Keywords: digital technologies in dentistry, digital impressions, intraoral scanner, 3D printing, ExoCAD, complete removable dentures.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoyu Zhao ◽  
Ye Zhao ◽  
Ming-De Li ◽  
Zhong’an Li ◽  
Haiyan Peng ◽  
...  

AbstractPhotopolymerization-based three-dimensional (3D) printing can enable customized manufacturing that is difficult to achieve through other traditional means. Nevertheless, it remains challenging to achieve efficient 3D printing due to the compromise between print speed and resolution. Herein, we report an efficient 3D printing approach based on the photooxidation of ketocoumarin that functions as the photosensitizer during photopolymerization, which can simultaneously deliver high print speed (5.1 cm h−1) and high print resolution (23 μm) on a common 3D printer. Mechanistically, the initiating radical and deethylated ketocoumarin are both generated upon visible light exposure, with the former giving rise to rapid photopolymerization and high print speed while the latter ensuring high print resolution by confining the light penetration. By comparison, the printed feature is hard to identify when the ketocoumarin encounters photoreduction due to the increased lateral photopolymerization. The proposed approach here provides a viable solution towards efficient additive manufacturing by controlling the photoreaction of photosensitizers during photopolymerization.


2019 ◽  
Vol 254 ◽  
pp. 01018
Author(s):  
František Bárnik ◽  
Milan Vaško ◽  
Milan Sága ◽  
Marián Handrik ◽  
Alžbeta Sapietová

By 3D printing it is possible to create different structures with different fiber-laying directions. These structures can be created depending on the type of 3D printer and its software. The Mark Two printer allows printing Onyx, a material based on nylon in combination with microcarbon fibers. Onyx can be used alone or reinforced with kevlar, glass or carbon fibers. This article deals with 3D printing and evaluation of mechanical properties of printed samples.


2020 ◽  
Vol 11 (1) ◽  
pp. 49
Author(s):  
Keunbada Son ◽  
Kyu-Bok Lee

A dental implant surgical guide fabricated by 3-dimensional (3D) printing technology is widely used in clinical practice due to its convenience and fast fabrication. However, the 3D printing technology produces an incorrect guide hole due to the shrinkage of the resin materials, and in order to solve this, the guide hole is adjusted using a trimmer or a metal sleeve is attached to the guide hole. These methods can lead to another inaccuracy. The present method reports a technique to compensate for a decreased guide hole caused by shrinkage that can occur when a computer-guided implant surgical guide is fabricated with a 3D printer. The present report describes a technique to adjust the size of the guide hole using a free software program to identify the optimized guide hole size that is fabricated with the 3D printer.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2125
Author(s):  
José María Rosales ◽  
Cristina Cejudo ◽  
Lidia Verano ◽  
Lourdes Casas ◽  
Casimiro Mantell ◽  
...  

Polylactic Acid (PLA) filaments impregnated with ethanolic mango leaves extract (MLE) with pharmacological properties were obtained by supercritical impregnation. The effects of pressure, temperature and amount of extract on the response variables, i.e., swelling, extract loading and bioactivity of the PLA filaments, were determined. The analysis of the filaments biocapacities revealed that impregnated PLA filaments showed 11.07% antidenaturant capacity and 88.13% antioxidant activity, which after a 9-day incubation shifted to 30.10% and 9.90%, respectively. Subsequently, the same tests were conducted on printed samples. Before their incubation, the printed samples showed 79.09% antioxidant activity and no antidenaturant capacity was detected. However, after their incubation, the antioxidant activity went down to only 2.50%, while the antidenaturant capacity raised up to 23.50%. The persistence of the bioactive properties after printing opens the possibility of using the functionalized PLA filaments as the feed for a three-dimensional (3D) printer.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2545
Author(s):  
Marcin Hoffmann ◽  
Krzysztof Żarkiewicz ◽  
Adam Zieliński ◽  
Szymon Skibicki ◽  
Łukasz Marchewka

Foundation piles that are made by concrete 3D printers constitute a new alternative way of founding buildings constructed using incremental technology. We are currently observing very rapid development of incremental technology for the construction industry. The systems that are used for 3D printing with the application of construction materials make it possible to form permanent formwork for strip foundations, construct load-bearing walls and partition walls, and prefabricate elements, such as stairs, lintels, and ceilings. 3D printing systems do not offer soil reinforcement by making piles. The paper presents the possibility of making concrete foundation piles in laboratory conditions using a concrete 3D printer. The paper shows the tools and procedure for pile pumping. An experiment for measuring pile bearing capacity is described and an example of a pile deployment model under a foundation is described. The results of the tests and analytical calculations have shown that the displacement piles demonstrate less settlement when compared to the analysed shallow foundation. The authors indicate that it is possible to replace the shallow foundation with a series of piles combined with a printed wall without locally widening it. This type of foundation can be used for the foundation of low-rise buildings, such as detached houses. Estimated calculations have shown that the possibility of making foundation piles by a 3D printer will reduce the cost of making foundations by shortening the time of execution of works and reducing the consumption of construction materials.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yuezong Wang ◽  
Jinghui Liu ◽  
Mengfei Guo ◽  
LiuQIan Wang

Purpose A three-dimensional (3D) printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy. The purpose of this study is to analyze the influence of such errors on printing accuracy and printing quality for delta-robot 3D printer. Design/methodology/approach First, the kinematic model of a delta-robot 3D printer with an ideal geometric structure is proposed by using vector analysis. Then, the normal kinematic model of a nonideal delta-robot 3D robot with tilted vertical beams is derived based on the above ideal kinematic model. Finally, a 3D printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy. Findings The results show that tilted vertical beams can indeed cause 3D printing errors and further influence the 3D printing quality of the final products and that the 3D printing errors of tilted vertical beams are related to the rotation angles of the tilted vertical beams. The larger the rotation angles of the tilted vertical beams are, the greater the geometric deformations of the printed structures. Originality/value Three vertical beams and six horizontal beams constitute the supporting parts of the frame of a delta-robot 3D printer. In this paper, the orientations of tilted vertical beams are shown to have a significant influence on 3D printing accuracy. However, the effect of tilted vertical beams on 3D printing accuracy is difficult to capture by instruments. To reveal the 3D printing error mechanisms under the condition of tilted vertical beams, the error generation mechanism and the quantitative influence of tilted vertical beams on 3D printing accuracy are studied by simulating the parallel motion mechanism of a delta-robot 3D printer with tilted vertical beams.


Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 523 ◽  
Author(s):  
Wei Goh ◽  
Michinao Hashimoto

Fused deposition modeling (FDM) has become an indispensable tool for 3D printing of molds used for sacrificial molding to fabricate microfluidic devices. The freedom of design of a mold is, however, restricted to the capabilities of the 3D printer and associated materials. Although FDM has been used to create a sacrificial mold made with polyvinyl alcohol (PVA) to produce 3D microchannels, microchannels with free-hanging geometries are still difficult to achieve. Herein, dual sacrificial molding was devised to fabricate microchannels with overhang or helical features in PDMS using two complementary materials. The method uses an FDM 3D printer equipped with two extruders and filaments made of high- impact polystyrene (HIPS) and PVA. HIPS was initially removed in limonene to reveal the PVA mold harboring the design of microchannels. The PVA mold was embedded in PDMS and subsequently removed in water to create microchannels with 3D geometries such as dual helices and multilayer pyramidal networks. The complementary pairing of the HIPS and PVA filaments during printing facilitated the support of suspended features of the PVA mold. The PVA mold was robust and retained the original design after the exposure to limonene. The resilience of the technique demonstrated here allows us to create microchannels with geometries not attainable with sacrificial molding with a mold printed with a single material.


Author(s):  
Verma Walker, MLIS

Three-dimensional (3D) printing is opening new opportunities in biomedicine by enabling creative problem solving, faster prototyping of ideas, advances in tissue engineering, and customized patient solutions. The National Institutes of Health (NIH) Library purchased a Makerbot Replicator 2 3D printer to give scientists a chance to try out this technology. To launch the service, the library offered training, conducted a survey on service model preferences, and tracked usage and class attendance. 3D printing was very popular, with new lab equipment prototypes being the most common model type. Most survey respondents indicated they would use the service again and be willing to pay for models. There was high interest in training for 3D modeling, which has a steep learning curve. 3D printers also require significant care and repairs. NIH scientists are using 3D printing to improve their research, and it is opening new avenues for problem solving in labs. Several scientists found the 3D printer so helpful they bought one for their labs. Having a printer in a central and open location like a library can help scientists, doctors, and students learn how to use this technology in their work.


Sign in / Sign up

Export Citation Format

Share Document