scholarly journals Precision Management Practices - A Much Needed Set of Agro-Techniques to Improve Rice Productivity and Cutback the Resources in Aerobic Condition under Drip Irrigation

Author(s):  
D.S. Prabhudeva ◽  
Naga raju ◽  
T. Sheshadri ◽  
P.K. Basavaraja ◽  
M.N. Thimmegowda ◽  
...  
2021 ◽  
pp. 297-306
Author(s):  
J. Vandermaesen ◽  
W. Akkermans ◽  
S. Delalieux ◽  
J. Bal ◽  
Y. Smedts ◽  
...  

2021 ◽  
Author(s):  
Noelia Garcia-Franco ◽  
Martin Wiesmeier ◽  
Luis Carlos Colocho Hurtarte ◽  
Franziska Fella ◽  
María Martínez-Mena ◽  
...  

<p>Arid and semiarid regions represent about 47% of the total land area of the world and around 40% of the world’s food is produced there. In these areas, soil salinization is an emerging problem due to unsustainable land management practices and climate change. However, the use of sustainable land management practices in salt-affected soils can offset the negative effects of salinization and increase soil carbon stocks. In a Citrus tree orchard under semi-arid climate conditions, we evaluated the effect of (i) intensive tillage along with flood irrigation (IT); (ii) combination of no-tillage with pruning residues (branches and leaves) as mulch, and drip-irrigation (NT+PM); and (iii) combination of reduced tillage with the incorporation of pruning residues and drip-irrigation (RT+PI), on aggregate stability, amount and quality of organic matter fractions and soil organic carbon (OC) sequestration. Our results showed that the incorporation of pruning residues through reduced tillage decreased bulk density and salinity while soil porosity, soil OC and N stocks, and percentage of OC-rich macroaggregates increased compared to the IT system.  However, the positive effects of the NT+PM system on soil properties were limited to the topsoil. The IT management system showed the highest values of bulk density and salinity and lower amounts of macroaggregates and soil OC stocks. In conclusion, the combination of pruning residues through the reduced tillage and drip-irrigation was the most effective systems to improve soil structure and OC sequestration and reduced the salt content under Citrus tree orchard in semi-arid soils</p>


2021 ◽  
Author(s):  
Alba Canet-Marti ◽  
Angela Morales-Santos ◽  
Reinhard Nolz ◽  
Günter Langergraber ◽  
Christine Stumpp

<p>Sustainable agriculture should be based on management practices that improve resource usage efficiency and minimize harmful impacts on the environment while maintaining and stabilizing crop production. Both tillage and irrigation can have a great influence on hydrological processes within agroecosystems. However, it remains difficult to directly assess the effect of practices on water fluxes which has been mainly indirectly quantified by complex numerical modelling methods in the past. Therefore, the objective of the study was to use a space for time concept and measure oxygen and hydrogen isotopes (δ<sup>18</sup>O, δ<sup>2</sup>H) in the pore water of soil profiles as well as moisture contents for quantifying the soil water balance and fluxes. Covering all combinations, soil profiles and isotope analysis was performed for 16 sites planted with winter wheat and managed with different tillage (conventional tillage (CT), reduced tillage (RT), minimal tillage (MT), and no-tillage (NT)) and irrigation systems (hose reel boom irrigation with nozzles (BI), sprinkler irrigation (SI), drip irrigation (DI) and no irrigation (NI)). The results indicated that the more intense the tillage, the lower the water content. Among the irrigation systems, DI had the highest average water content. Tracing the minimum in the isotopic composition of the pores water within the depth profiles showed a deeper percolation of water in the CT fields, which indicates higher water flow velocity. Considering both water content and differences in water flow velocities resulted in water fluxes ranging from 90 to 151 mm yr<sup>-1</sup>. The losses due to evapotranspiration varied between 57 and 80%. The resulting evapotranspiration within tillage and irrigation variants decreased in the order RT>CT≈MT>NT, and SI>BI>DI>NI. Thus, the method revealed that the lower water content in CT fields is a consequence of deeper water infiltration. Moreover, irrigation water contributed mostly to evapotranspiration, and drip irrigation showed the lowest evapotranspiration losses among irrigation systems. This study demonstrated that water stable isotopes can be used as indicators and are a promising method to quantify water fluxes in agricultural fields with great potential for evaluating management practices.</p>


Soil Research ◽  
2003 ◽  
Vol 41 (7) ◽  
pp. 1305 ◽  
Author(s):  
P. R. Stork ◽  
P. H. Jerie ◽  
A. P. L. Callinan

The effects of ammonium-based fertilisers on the soil pH of vegetable beds that utilised subsurface drip irrigation (SDI) for commercial tomato production were investigated at field sites in the southern Murray–Darling Basin region (SMDB). The soils at these sites were Vertosols (sites 1, 3, 4, and 5) and a Chromosol (site 2). At site 1, rapid transport and hydrolysis of urea occurred within the 0–90 cm soil layer of vegetable beds after a 6-mm fertigation of 30 kg urea-N/ha during cropping. Soil pH decreased by 0.2–0.4 units in individual 15-cm soil layers up to 90 cm within 12 days after the fertigation. A longer study at site 1 showed that there was severe acidification in topsoil and subsoil by the second consecutive year of SDI cropping. The rate of acidification was highest, at 52 kmol H+/ha.year, immediately beneath the dripline, in the 15–30 cm soil layer. Topsoil and subsoil acidification was also evident in vegetable beds at sites 2, 3, 4, and 5 after 2 consecutive years of tomato cropping using SDI. The results from the 5 sites indicated that acidification under SDI production may be widespread. A survey of 21 other sites in the SMDB under similar production showed that one-third of the sites had soil pH ≤6.0 in their 0–30 cm soil layer. Several soil types were individually represented at acid and alkaline pH levels, by 2 or more sites. This indicated that management practices influenced the change in soil pH for a given soil type. Altogether, the combined results of these studies strongly indicated that surface and subsoil acidification can occur in soils used for intensive SDI production. This may diminish their productivity in the long term.


EDIS ◽  
2013 ◽  
Vol 2013 (4) ◽  
Author(s):  
Lincoln Zotarelli ◽  
Libby Rens ◽  
Charles Barrett ◽  
Daniel J. Cantliffe ◽  
Michael D. Dukes ◽  
...  

In terms of water use efficiency, the traditional seepage irrigation systems commonly used in areas with high water tables are one of the most inefficient methods of irrigation, though some irrigation management practices can contribute to better soil moisture uniformity. Subsurface drip irrigation systems apply water below the soil surface by microirrigation, improving the water distribution and time required to raise the water table for seepage irrigation. This 6-page fact sheet was written by Lincoln Zotarelli, Libby Rens, Charles Barrett, Daniel J. Cantliffe, Michael D. Dukes, Mark Clark, and Steven Lands, and published by the UF Department of Horticultural Sciences, March 2013. http://edis.ifas.ufl.edu/hs1217


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 794 ◽  
Author(s):  
Xiaolei Qiu ◽  
Liang Tang ◽  
Yan Zhu ◽  
Weixing Cao ◽  
Leilei Liu

Maintaining high double rice productivity in China is very important for ensuring the food security of China. However, the double rice production system is sensitive to changes in both climate and management practices. Previous studies showed that rice production has been negatively impacted by global warming without considering the changes of cultivars and management practices. However, cultivar improvements and the impact of cultivar change must not be ignored in any assessment. In the current study, we combined data analysis with crop modeling to investigate the impacts of changes in climate and cultivars on rice productivity at three different double rice sites (Nanchang, Hengyang, and Gaoyao) in China. The results showed a warming trend at the study sites during 1981–2009, and the temperature increase rates (maximum, average, and minimum temperatures) in the late rice growing season were larger than in the early rice growing season. Global warming has led to a reduction in the length of the rice growth period. Adopting new rice cultivars may partially mitigate the declining trend of the growing duration and grain yield, but it would not completely compensate for the negative impact observed in double rice regions. In general, the changes in cultivars prolonged the growing duration by increasing the basic vegetative phase and the photoperiod formation phase. The main reasons for yield improvement were the increase in the percentage of filled grains for early rice and the increase in grain number per spike for late rice. In the face of future warming, breeding efforts are necessary for producing new cultivars that are resilient to the negative impacts of future climate change on agriculture.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hanuman S. Jat ◽  
Virender Kumar ◽  
Suresh K. Kakraliya ◽  
Ahmed M. Abdallah ◽  
Ashim Datta ◽  
...  

AbstractClimate-smart agriculture (CSA)-based management practices are getting popular across South-Asia as an alternative to the conventional system for particular weed suppression, resources conservation and environmental quality. An 8-year study (2012–2013 to 2019–2020) was conducted to understand the shift in weed density and diversity under different CSA-based management practices called scenarios (Sc). These Sc involved: Sc1, conventional tillage (CT)-based rice–wheat system with flood irrigation (farmers’ practice); Sc2, CT-rice, zero tillage (ZT)-wheat–mungbean with flood irrigation (partial CA-based); Sc3, ZT rice–wheat–mungbean with flood irrigation (partial CSA-based rice); Sc4, ZT maize–wheat–mungbean with flood irrigation (partial CSA-based maize); Sc5, ZT rice–wheat–mungbean with subsurface drip irrigation (full CSA-based rice); and Sc6, ZT maize–wheat–mungbean with subsurface drip irrigation (full CSA-based maize). The most abundant weed species were P. minor > A. arvensis > M. indicus > C. album and were favored by farmers’ practice. However, CSA-based management practices suppressed these species and favored S. nigrum and R. dentatus and the effect of CSAPs was more evident in the long-term. Maximum total weed density was observed for Sc1, while minimum value was recorded under full CSA-based maize systems, where seven weed-species vanished, and P. minor density declined to 0.33 instead of 25.93 plant m−2 after 8-years of continuous cultivation. Full CSA-based maize–wheat system could be a promising alternative for the conveniently managed rice–wheat system in weed suppression in north-west India.


2021 ◽  
Vol 1 (5) ◽  
pp. 1-9
Author(s):  
Shiva Kumar Jha ◽  
Mahendra Tripathi ◽  
Balram Bhandari ◽  
Bhanu Pokharel ◽  
Tika Karki ◽  
...  

Uneven and low precipitation areas of Nepal are continuously suffering from drought and received low productivity because of unavailability of suitable drought tolerant maize genotype. An attempt has been made first time in Nepal by constructing an automated rainout shelter with soil moisture based automated drip irrigation system at National Maize Research Program in 2018-2019 to conduct an experiment on drought tolerant maize genotype. The rainout shelters automatically covers the cropping area as soon as the rain sensor received a single drop of precipitation and also if the light intensity decreased to value set in the control panel. Likewise, the soil water level in different treatments were maintained on the basis of the treatment controlled with automatic drip irrigation system set to irrigate at threshold value set in the microcontroller. The complete system had found very useful in determining accurate amount of water required to cultivate drought tolerant maize genotype. We have tested drought tolerant variety RampurSo3Fo8 under 10 level of irrigation and it was determined that 495.2 mm of water is maximum level of water to produce highest yield of 3.32 t/ha whereas 445.6 mm to 247.6 mm of water could can be manage to produce competitive yield without any reduction. An experiment under such kind of infrastructure provide useful information on irrigation management practices required for drought variety in the natural environment. The research output also guides farmers and agriculturist in making Nepalese agricultural more sustainable, mechanized and productive.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 602a-602
Author(s):  
Janet C. Cole ◽  
John M. Dole ◽  
Vicki L. Stamback

Water quality has become a significant issue in the nursery industry. Local testing of runoff contamination from nursery production is, however, of little value to other growers because of the variation in management practices and nursery layouts. Two nursery blocks have been designed and constructed to test runoff from production with sprinkler and drip irrigation systems in combination with constant liquid fertilization and controlled release fertilizers. Management practices using various combinations of irrigation systems with fertilizer application rates are being tested in a small area with reasonable control of inputs. Preliminary data has shown no difference in plant response to irrigation method, but runoff was significantly reduced with drip irrigation. Plant quality was better with controlled release fertilizer, which generally yielded less N and P contamination in runoff, than constant liquid fertilization except during extremely hot weather.


Author(s):  
Aitazaz Ahsan Farooque ◽  
Farhat Abbas

Cannabis (Cannabis sativa L.) growers worldwide lack reliable and research-based information about precision management practices (PMP) of cannabis. The history, legal framework, and PMP for cultivation of cannabis have been reviewed with special emphasis on water management, nutrient management, and disease control for optimum cannabis production. The aim is to provide guidelines for precision farming of cannabis to meet fibrous and medicinal needs of the humankind. Therefore, the scope of this chapter is for the potential of hemp cultivation to meet industry needs of fiber and medicine. Methods of irrigation scheduling, nutrient applications, and keeping greenhouse hygienically clean for disease-free (i.e., powdery mildew) hemp production are discussed. Reviewed and recommended application rates of irrigation and nutrients, and environment controls have been tabulated. Chemical, biological, and physical controls of PM control and crop input requirements for disease-free cultivation of hemp are presented.


Sign in / Sign up

Export Citation Format

Share Document