scholarly journals Impact of Irrigation and Mulch on Leaf Area Index, Yield and Water use Efficiency of Strawberry under Polyhouse

Author(s):  
Sushanta Sarkar ◽  
Supradip Sarkar
2019 ◽  
Vol 11 (3) ◽  
pp. 549
Author(s):  
Fábio Teixeira Delazari ◽  
Mariane Gonçalves Ferreira Copati ◽  
Gustavo Henrique da Silva ◽  
Ronaldo Silva Gomes ◽  
Derly José Henriques da Silva ◽  
...  

Nitrogen fertilization and supplying of water are crucial factors for quality and quantity produces of coriander. The objective of this study was to evaluate morphological and ecophysiological characteristics for coriander under five irrigation depths and two doses of nitrogen (N). Experimental layout was completely randomized design in a split plot scheme with five replications. The irrigation depths (plot) was 25, 50, 75, 100 and 125% of crop evapotranspiration (ETc). The doses of N (subplot) corresponded to 35 and 70 kg ha-1. The cultivation of coriander (“Vedete”) was in a protected environment. The ratio between the aerial part and roots linearly increased with the increment of the irrigation depths and was highest under 70 kg ha-1 of nitrogen. The leaf area index linearly increased with the increment of the irrigation depths at both doses of N. The leaf index of chlorophyll “a” was highest under irrigation depths of 87 and 75% of ETc for 35 and 70 kg ha-1 of N, respectively. The leaf index of chlorophyll “b” decrease linearly with the increase of irrigation depths in both doses of N. The nitrogen use efficiency was maximized with high soil moisture conditions. The water use efficiency decreases linearly with increasing of irrigation depth. The best irrigation depth and nitrogen dose obtained in this study was 125% of ETc and 70 kg/ha. The leaf index of chlorophyll “a” and “b” are important indicators of hydric stress. The leaf index of chlorophyll “b” are negatively correlated with leaf area index. N supply increase the water use efficiency.


Científica ◽  
2020 ◽  
Vol 48 (2) ◽  
pp. 85
Author(s):  
Wellington Mezzomo ◽  
Marcia Xavier Peiter ◽  
Adroaldo Dias Robaina ◽  
Jardel Henrique Kirchner ◽  
Rogério Ricalde Torres ◽  
...  

1997 ◽  
Vol 24 (6) ◽  
pp. 831 ◽  
Author(s):  
Michael Battaglia ◽  
Peter Sands

A simple model, PROMOD, predicts the growth of a forest following canopy closure, i.e. under conditions in which the foliage biomass has attained a steady state. The principal output from PROMOD is peak mean annual increment. However, additional output available includes the closed-canopy leaf area index, evapotranspiration and water use efficiency. In addition, an indication of biomass partitioning around the time of peak MAI and the relative effects different environmental factors play in limiting production can be obtained. PROMOD is based on a generalisation of a simple forest growth model which predicts biomass production and partitioning at the stand level with a daily or annual time step. The minimum level of inputs required by PROMOD are of a quality and quantity that forest managers can readily and cheaply obtain for screening prospective plantation sites: the latitude, longitude, altitude, slope and aspect of the site and a classification of the soil depth, texture, stoniness, drainage and a rating of site fertility. However, PROMOD can be run using daily inputs of weather data and hence predict the seasonal variation of production. The closed-canopy leaf area index is calculated from the mean annual rainfall and temperature at the site, and a simple rating of site fertility. Annual production is calculated as the sum of daily production and takes diurnal temperature variation and possible seasonal photosynthetic acclimation into account. A simple soil water balance model is included in which water use is based on a crop factor which is a function of soil water content and a water use efficiency which is a function of vapour pressure deficit. The model was developed on the basis of data from nine plots of Eucalyptus globulus in south-eastern Tasmania and in Western Australia, and was validated using data from 19 plots in northern Tasmania.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 313
Author(s):  
Guoqiang Zhang ◽  
Bo Ming ◽  
Dongping Shen ◽  
Ruizhi Xie ◽  
Peng Hou ◽  
...  

Achieving optimal balance between maize yield and water use efficiency is an important challenge for irrigation maize production in arid areas. In this study, we conducted an experiment in Xinjiang China in 2016 and 2017 to quantify the response of maize yield and water use to plant density and irrigation schedules. The treatments included four irrigation levels: 360 (W1), 480 (W2), 600 (W3), and 720 mm (W4), and five plant densities: 7.5 (D1), 9.0 (D2), 10.5 (D3), 12.0 (D4), and 13.5 plants m−2 (D5). The results showed that increasing the plant density and the irrigation level could both significantly increase the leaf area index (LAI). However, LAI expansion significantly increased evapotranspiration (ETa) under irrigation. The combination of irrigation level 600 mm (W3) and plant density 12.0 plants m−2 (D4) produced the highest maize yield (21.0–21.2 t ha−1), ETa (784.1–797.8 mm), and water use efficiency (WUE) (2.64–2.70 kg m−3), with an LAI of 8.5–8.7 at the silking stage. The relationship between LAI and grain yield and evapotranspiration were quantified, and, based on this, the relationship between water use and maize productivity was analyzed. Moreover, the optimal LAI was established to determine the reasonable irrigation level and coordinate the relationship between the increase in grain yield and the decrease in water use efficiency.


2003 ◽  
Vol 51 (5) ◽  
pp. 509 ◽  
Author(s):  
Andrea Leigh ◽  
Adrienne B. Nicotra

Sexual dimorphism in dioecious plant species is widely attributed to the differential impacts of reproduction on male v. female plants. We investigated sexual dimorphism in reproductive, morphological and physiological traits of Maireana pyramidata (Benth.) Paul G.Wilson (Chenopodiaceae), a dioecious, semi-arid shrub endemic to Australia. We estimated reproductive allocation for each sex by calculating the relative biomass allocated to flowers and fruits per gram of leaf tissue, based on one branch per sample plant. Morphological measurements included leaf mass, stem mass, specific leaf area, plant height and plant leaf area index. We also measured leaf nitrogen and chlorophyll, gas exchange and Δ13C. Reproductive allocation was nine times greater in females than in males. No significant difference between the sexes in photosynthetic rate or transpiration could be detected but instantaneous water use efficiency (photosynthesis/transpiration) was significantly lower in females than in males during the fruiting period. Δ13C did not differ between the sexes. The results indicate that greater reproductive allocation in females has an immediate impact on their capacity for conservative water use but does not lead to long-term differences in water use efficiency.


Author(s):  
Jiying Sun ◽  
Julin Gao ◽  
Zhigang Wang ◽  
Shuping Hu ◽  
Fengjie Zhang ◽  
...  

Subsoil tillage loosens compacted soil for better plant growth, but promotes water loss, which is a concern in areas commonly irrigated. Therefore, our objective was to determine the physiological responses of high yield spring corn (Zea mays L.) to Subsoil tillage depth when grown in the western plain irrigation area of Inner Mongolia that leads to the best water use efficiency. The experiment during 2014 and 2015 used Zhengdan958 and Xianyu335 with three differing subsoil tillage depths (30, 40, or 50 cm) as trial factor and shallow rotary as a control. Subsoil tillage increased shoot dry matter accumulation, leading to a greater shoot/root ratio. Subsoil tillage helped retain greater leaf area index in each growth stage, increase the leaf area duration, net assimilation rate, and relative growth rate, with greater effects as tillage was deeper, effectively delaying the aging of the blade. Grain yields were increased by 0.7%–8.9% on average in subsoil tillage treatments compared to conventional soil treatment shallow rotary, Water use efficiency were increased by 1.93%–18.49% on average in subsoil tillage treatment compared to shallow rotary, resulting in net income increases by 2.24% to 6.97% compared to shallow rotary. Among the three different subsoil tillage depth treatment, the grain yield, water use efficiency, and net income is the best under the treatment of subsoil tillage depth of 50 cm.


2020 ◽  
Author(s):  
Serena Sirigu ◽  
Roberto Corona ◽  
Nicola Montaldo ◽  
Ram Oren ◽  
Dora Soru

<p>Over the past century, climate change has been reflected in altered precipitation regimes worldwide.  Recently, Montaldo and Sarigu (2017) showed that Sardinia runoff decreased over the 1975-2010 period, with mean annual values 40% lower than the 1922-1974 period.</p><p>These trends will have dramatic consequences on basin water resources, therefore forests are frequently exposed to periods characterized by a reduced water availability that influences the evapotranspiration process (ET), the water use efficiency and could be also the main cause of tree mortality or change of tree spatial distribution and density.</p><p>The Marganai forest, located in South West Sardinia (Italy), is a Long-Term Ecosystem Research (LTER) Italian site and a European Site of Community Importance (Natura 2000) managed by FORESTAS. The vegetation is mainly composed by Quercus Ilex trees and the soil depth varies between 10 cm and 50 cm. Historical data are from 16 rain stations (1922-2018 period) over the entire area and data of runoff of the Fluminimaggiore basin (area of 83 km<sup>2</sup>) are available. From 1922 a persistent decrease trend of winter precipitation in that area (Mann-Kendall t of -0.26) impacted runoff, which decreased of 2.52 mm/y.</p><p>Future climate scenarios are selected from IPCC climate change scenarios. From the 12 Atmosphere-Ocean General Circulation Models (AOGCMs) of Flato et al. (2013), we selected theHadGEM2-AO that simulates reasonable approximation of observed past seasonal precipitation and air temperature changes (1976-2004 compared with 1951-1975) in Sardinia.Using a distributed ecohydrologic model and the HADGEM2-AO future climate (rainfall and air temperature ) scenarios we predict both hydrologic (soil moisture, runoff, ET) and vegetation dynamic (CO2, biomass, leaf area index and vegetation fraction) outputs.</p><p>The model has been successfully calibrated for runoff and ET estimation for the 1922 – 2018 period. Then, the eco-hydrological model, forced with the generated future scenarios, predict a significant change on tree leaf area index, with the reduction of tree density, spatial distribution, forest productivity and runoff. Future scenario predicting further decline is particularly alarming for the Marganai forest, requiring new strategies in both forestal and water resources planning and management.</p>


1984 ◽  
Vol 35 (6) ◽  
pp. 765 ◽  
Author(s):  
RJ French ◽  
JE Schultz

Evidence is presented that water use efficiency and yield of wheat are reduced by insufficient leaf area and by inadequate content of nutrients in the top growth. Yields from field trials are compared with the potential yield, and a review is made of the limitations caused by weeds, the incidence of diseases and the harvest index. The data highlight the need for field experiments to define the evaporation and transpiration components of water use in each environment. They also indicate the need for multi-factorial treatments to overcome all yield limitations and thereby attain the potential yield.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1685 ◽  
Author(s):  
Abdul Shabbir ◽  
Hanping Mao ◽  
Ikram Ullah ◽  
Noman Ali Buttar ◽  
Muhammad Ajmal ◽  
...  

Root morphology and its components’ behavior could show a considerable response under multiple water application points per plant to help the ultimate effect of fruit yield and fruit quality. In this study, a comparison of a single emitter per plant was made with two, three, and four emitters per plant under drip irrigation and two irrigation levels (full irrigation 100% and deficit irrigation 75% of crop evapotranspiration) to investigate their effects on physiological parameters, root, yield, and their associated components for potted cherry tomato under greenhouse conditions in Jiangsu-China. The experimental results showed that the plants cultivated in the spring-summer planting season showed significantly higher results than the fall-winter planting season due to low temperatures in the fall-winter planting season. However, the response root length, root average diameter, root dry mass, leaf area index, photosynthetic rate, transpiration rate, fruit unit fresh weight, the number of fruits, and pH were increased by multiple emitters per plant over a single emitter per plant, but total soluble solids decreased. Besides, a decreasing trend was observed by deficit irrigation for both planting seasons, and vice versa for the case for tomato total soluble solids. Due to an increase in measured parameters for multiple emitters per plant over a single emitter per plant, the yield, water use efficiency, and water use efficiency biomass significantly increased by 18.1%, 17.6%, and 15.1%, respectively. The deficit irrigation caused a decrease in the yield of 5% and an increase in water use efficiency and water use efficiency biomass of 21.4% and 22.9%, respectively. Two, three, and four emitters per plant had no significant effects, and the obtained results were similar. Considering the root morphology, yield, water use efficiency, water use efficiency biomass, and fruit geometry and quality, two emitters per plant with deficit irrigation are recommended for potted cherry tomato under greenhouse conditions. The explanation for the increased biomass production of the plant, yield, and water use efficiency is that two emitters per plant (increased emitter density) reduced drought stress to the roots, causing increased root morphology and leaf area index and finally promoting the plant’s photosynthetic activity.


Sign in / Sign up

Export Citation Format

Share Document