scholarly journals Free Vibration and Frequency Calculation in Tall Buildings with Stepped Tube-in-Tube Systems

2021 ◽  
Vol 26 (2) ◽  
pp. 140-146
Author(s):  
Mohammad Babaei ◽  
Yaghoub Mohammadi ◽  
Amin Ghannadiasl

This study investigates the free vibration and frequency analysis of tall buildings with stepped cross-sections for stepped tube-in-tube structures. Dynamic equations were presented in accordance with the stepped structural system for free vibration and the differential equations were solved according to the application of boundary conditions and flexural and shear stiffness and stepped cross-section of different steps. The answer was converted to an 8x8 matrix and was obtained using the determinants of matrix and mathematical calculations of frequency. Nine mathematical computational models were designed for stepped tube-in-tube structures for a 50-story tube-in-tube building by increasing the height of the outer tube by 15 meters. Finally, the heights of the inner and outer tubes were equalized by increasing the height of the outer tube and then compared with the results of free vibration in the articles with the tube-in-tube structural system with equal height and characteristics. Using this method, the frequency of structures was calculated correctly and the obtained results from finite element analysis showed that this mathematical method accurately calculated the frequency. It was found that this method was accurate enough and the obtained computational error was very small. The results showed that the frequency decreases by adding to the outer tube and increasing its height.

2020 ◽  
Vol 11 (1) ◽  
pp. 278
Author(s):  
Ivan Hafner ◽  
Anđelko Vlašić ◽  
Tomislav Kišiček ◽  
Tvrtko Renić

Horizontal loads such as earthquake and wind are considered dominant loads for the design of tall buildings. One of the most efficient structural systems in this regard is the tube structural system. Even though such systems have a high resistance when it comes to horizontal loads, the shear lag effect that is characterized by an incomplete and uneven activation of vertical elements may cause a series of problems such as the deformation of internal panels and secondary structural elements, which cumulatively grow with the height of the building. In this paper, the shear lag effect in a typical tube structure will be observed and analyzed on a series of different numerical models. A parametric analysis will be conducted with a great number of variations in the structural elements and building layout, for the purpose of giving recommendations for an optimal design of a tube structural system.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3855
Author(s):  
Arturo Popoli ◽  
Leonardo Sandrolini ◽  
Andrea Cristofolini

In this paper, a strategy for reducing the electromagnetic interferences induced by power lines on metallic pipelines is proposed and numerically investigated. The study considers a set of steel conductors interposed between the power line and the pipeline. Different shapes of conductor cross sections and different magnetic permeabilities are considered, to identify the solution exhibiting the greatest mitigation efficiency for the same amount of material. The investigation is carried out by means of a quasi-3D finite element analysis. Results show that the main mechanism responsible for the mitigation is constituted by the currents induced in the screening conductors by the power line. Hence, a high magnetic permeability can have a detrimental effect since it reduces the skin depth to values below the size of the screening conductor. In this case, a reduction of the screening current and in the mitigation efficiency is observed. Nevertheless, the study shows that the use of strip-shaped screening conductors allows the employment of cheaper magnetic materials without compromising the mitigation efficacy of the screening conductors.


2015 ◽  
Vol 752-753 ◽  
pp. 1029-1034
Author(s):  
Asnizah Sahekhaini ◽  
Pauziah Muhamad ◽  
Masayuki Kohiyama ◽  
Aminuddin Abu ◽  
Lee Kee Quen ◽  
...  

This paper presents a wavelet-based method of identification modal parameter and damage detection in a free vibration response. An algorithm for modal parameter identification and damage detection is purposed and complex Morlet wavelet is chosen as an analysis wavelet function. This paper only focuses on identification of natural frequencies of the structural system. The method utilizes both undamaged and damage experiment data of free vibration response of the truss structure system. Wavelet scalogram is utilizes for damage detection. The change of energy components for undamaged and damage structure is investigated from the plot of wavelet scalogram which corresponded to the detection of damage.


2017 ◽  
Vol 63 (1) ◽  
pp. 115-132
Author(s):  
Y. Song ◽  
X. Chai

Abstract In this paper, a semi-analytical solution for free vibration differential equations of curved girders is proposed based on their mathematical properties and vibration characteristics. The solutions of in-plane vibration differential equations are classified into two cases: one only considers variable separation of non-longitudinal vibration, while the other is a synthesis method addressing both longitudinal and non-longitudinal vibration using Rayleigh’s modal assumption and variable separation method. A similar approach is employed for the out of- plane vibration, but further mathematical operations are conducted to incorporate the coupling effect of bending and twisting. In this case study, the natural frequencies of a curved girder under different boundary conditions are obtained using the two proposed methods, respectively. The results are compared with those from the finite element analysis (FEA) and results show good convergence.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 90
Author(s):  
Francesco Cascone ◽  
Diana Faiella ◽  
Valentina Tomei ◽  
Elena Mele

An innovative generative design strategy, based on shape grammar, is proposed for the minimum-weight design of diagrid tall buildings. By considering the building as a three-dimensional vertical cantilever beam with a tubular section under horizontal load, it is evident that bending and shear stiffness demands vary along the width and elevation of the building. Further, while the structural design of tall buildings is usually governed by stiffness, the predominant design criterion for diagrids could be the local strength demand, especially for low slenderness values, thanks to the inherent rigidity of the triangular pattern. Starting from these considerations, in this paper, a generative design strategy is proposed, able to find diagrid patterns that accommodate the differentiated stiffness demand along width/elevation and satisfy the predominant design criterion, stiffness or strength. The design strategy is applied to tall building models characterised by different slenderness values. The comparison to diagrid patterns analysed in previous literature works in terms of structural weight and performance parameters highlights the effectiveness of the design strategy and the efficiency of the generated patterns.


Author(s):  
Kevin O’Shea

Abstract The use of finite element analysis (FEA) in high frequency (20–40 kHz), high power ultrasonics to date has been limited. Of paramount importance to the performance of ultrasonic tooling (horns) is the accurate identification of pertinent modeshapes and frequencies. Ideally, the ultrasonic horn will vibrate in a purely axial mode with a uniform amplitude of vibration. However, spurious resonances can couple with this fundamental resonance and alter the axial vibration. This effect becomes more pronounced for ultrasonic tools with larger cross-sections. The current study examines a 4.5″ × 6″ cross-section titanium horn which is designed to resonate axially at 20 kHz. Modeshapes and frequencies from 17–23 kHz are examined experimentally and using finite element analysis. The effect of design variables — slot length, slot width, and number of slots — on modeshapes and frequency spacing is shown. An optimum configuration based on the finite element results is prescribed. The computed results are compared with actual prototype data. Excellent correlation between analytical and experimental data is found.


1999 ◽  
Author(s):  
Rebecca Cragun ◽  
Larry L. Howell

Abstract Thermomechanical in-plane microactuators (TIMs) have been designed, modeled, fabricated, and tested. TIMs offer an alternative to arrays of smaller thermal actuators to obtain high output forces. The design is easily modified to obtain the desired output force or deflection for specific applications. The operational principle is based on the symmetrical thermal expansion of variable cross sections of the surface micromachined microdevice. Sixteen configurations of TIMs were fabricated of polysilicon. Finite element analysis models were used to predict the deflection and output force for the actuators. Experimental results were also recorded for all sixteen configurations, including deflections and output forces up to 20 micron and 35 dyne.


A pure water jet at subsonic speed provides an opportunity for application in cutting soft material with the advantage of not contaminating the workpiece. Inside the nozzle, water is flowing through various cross sections, which lead to pressure drop and loss of energy. This requires a nozzle with a design that causes minimum pressure drop. In this work, Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) were used to analyse the flow through five different nozzles. For each nozzle, the pressures of 10 MPa, 20 MPa and 30 MPa were applies at the inlet. For the inlet pressure of 10 MPa, the highest outlet velocity us 136.12 m/s at the pressure of 9.261 MPa. The impact pressure at stand distance of 0.5 mm and 1.0 mm were 8.26 MPa and 8.02 MPa, respectively. For this nozzle, the Factor of Safety for 10 MPa, 20 MPa and 30 MPa were 6.4, 3.2 and 2.961, respectively. The findings are relevant to the development of pure water jet cutting machine


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 155
Author(s):  
Zacharias Vangelatos ◽  
Michail Delagrammatikas ◽  
Olga Papadopoulou ◽  
Charalampos Titakis ◽  
Panayota Vassiliou

<p class="Abstract">Finite element analysis is employed to investigate the mechanical behaviour and failure scenarios of the marble block–steel clamp ancient masonry system utilised in the Parthenon (Athens Acropolis) under static loading analysis. The input data for the model are acquired by the laboratory testing of early 20th century restoration steel clamps, such as through tensile strength measurements and metallography, as well as bibliographic sources from various scientific fields (i.e. material properties, archaeometry, restoration, structural engineering and geology). Two different embedding materials (Portland cement mortar and lead), used for the nesting of the clamps, are examined under bending or stretching, induced by acceleration forces. The conservation status of the materials is taken into account by employing an intrinsic stress, as is the case when corrosion products build up in a confined space. The aim of this work is to provide a tool for the assessment of the conservation potential of the marble blocks in parts of the monument that require specific attention. Simulation results indicate the resilience of the Parthenon’s structural system under most examined scenarios and highlight the importance of intrinsic stresses, the existence of which may lead to the fracture of the marble blocks under otherwise harmless loading conditions.</p>


Author(s):  
bohua sun

The formulation used by most of the studies on an elastic torus are either Reissner mixed formulation or Novozhilov's complex-form one, however, for vibration and some displacement boundary related problem of a torus, those formulations face a great challenge. It is highly demanded to have a displacement-type formulation for the torus. In this paper, I will carry on my previous work [ B.H. Sun, Closed-form solution of axisymmetric slender elastic toroidal shells. J. of Engineering Mechanics, 136 (2010) 1281-1288.], and with the help of my own maple code, I am able to simulate some typical problems and free vibration of the torus. The numerical results are verified by both finite element analysis and H. Reissner's formulation. My investigations show that both deformation and stress response of an elastic torus are sensitive to the radius ratio, and suggest that the analysis of a torus should be done by using the bending theory of a shell, and also reveal that the inner torus is stronger than outer torus due to the property of their Gaussian curvature. Regarding the free vibration of a torus, our analysis indicates that both initial in u and w direction must be included otherwise will cause big errors in eigenfrequency. One of the most intestine discovery is that the crowns of a torus are the turning point of the Gaussian curvature at the crown where the mechanics' response of inner and outer torus is almost separated.


Sign in / Sign up

Export Citation Format

Share Document