scholarly journals Printed thermoplastic modular piece, P.T.M.P. = Piezas termoplásticas modulares, P.T.M.P.

2018 ◽  
Vol 2 (1) ◽  
pp. 12
Author(s):  
Sandra Moyano Sanz ◽  
Mercedes Valiente López

This research tries to design a modular part suitable for construction, with new materials and manufacturing processes. Polymers and 3D printing are the key elements in the process. It is about implanting a new model of modular part that is able to replace the conventional brick. With this research, we want to make known the new construction processes derived from 3D printing and how we can improve the existing technology. The main objective is to design a modular part, using additive manufacturing systems and plastic materials. Then we are going to determine the physical characteristics that the pieces must have, and the geometric possibilities that the manufacturing process allows us, as well as the materials that the pieces will be made. These pieces will be subject to all the actual tests to ceramic pieces, according to the current standard. Additionally, we will analyze the results obtained and compare them with an expensive ceramic brick to assess the advantages obtained. Finally, we will determine some conclusions derived from these investigations, and propose new study proposals. With this research, we intend to demonstrate that, although conventional brick are basic elements of construction and fulfils its functions perfectly, it is time to adapt the new technologies to the constructive methods.ResumenEste estudio trata de diseñar una pieza modular apropiada para la construcción mediante nuevos procesos de producción y nuevos materiales. Los polímeros y la impresión 3D son los elementos clave del proceso. Además, se estudia implantar un nuevo modelo de pieza modular que sea capaz de sustituir al ladrillo convencional. Con esta investigación queremos divulgar los nuevos procesos asociados a la impresión 3D y como podemos mejorar la tecnología existente. El objetivo principal es diseñar una pieza modular, usando sistemas de fabricación aditiva y materiales plásticos. Posteriormente vamos a determinar las características físicas que deben tener las piezas y las posibilidades en cuanto a la geometría que el proceso de producción nos permite, además de los materiales que compondrán las piezas. Estas piezas serán sujeto de todos los test estándar aplicables a las piezas cerámicas. Adicionalmente, analizaremos los resultados obtenidos y los compararemos con piezas de ladrillo de alta calidad para asegurarnos de las posibles ventajas obtenidas. Finalmente, haremos algunas conclusiones derivadas del estudio, y se harán propuestas para nuevas vías de estudio. Con la investigación tenemos la intención de demostrar que aunque los ladrillos convencionales son elementos constructivos básicos, que cumplen su función perfectamente, es momento de adaptar las nuevas tecnologías a los métodos constructivos.

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2133
Author(s):  
Eva María Rubio ◽  
Ana María Camacho

The Special Issue of the Manufacturing Engineering Society 2019 (SIMES-2019) has been launched as a joint issue of the journals “Materials” and “Applied Sciences”. The 29 contributions published in this Special Issue of Materials present cutting-edge advances in the field of manufacturing engineering focusing on additive manufacturing and 3D printing, advances and innovations in manufacturing processes, sustainable and green manufacturing, manufacturing of new materials, metrology and quality in manufacturing, industry 4.0, design, modeling, and simulation in manufacturing engineering and manufacturing engineering and society. Among them, these contributions highlight that the topic “additive manufacturing and 3D printing” has collected a large number of contributions in this journal because its huge potential has attracted the attention of numerous researchers over the last years.


2013 ◽  
Vol 58 (4) ◽  
pp. 1415-1418 ◽  
Author(s):  
P. Dudek

Abstract In recent years, FDM technology (Fused Deposition Modelling) has become one of the most widely-used rapid prototyping methods for various applications. This method is based on fused fibre material deposition on a drop-down platform, which offers the opportunity to design and introduce new materials, including composites. The material most commonly used in FDM is ABS, followed by PC, PLA, PPSF, ULTEM9085 and mixtures thereof. Recently, work has been done on the possibility of applying ABS blends: steel powders, aluminium, or even wood ash. Unfortunately, most modern commercial systems are closed, preventing the use of any materials other than those of the manufacturer. For this reason, the Department of Manufacturing Systems (KSW) of AGH University of Science and Technology, Faculty of Mechanical Engineering And Robotics purchased a 3D printer with feeding material from trays reel, which allows for the use of other materials. In addition, a feedstock production system for the 3D printer has been developed and work has started on the creation of new composite materials utilising ceramics.


2020 ◽  
Vol 27 (10) ◽  
pp. 1580-1599 ◽  
Author(s):  
Gabriel Victor Simões Dutra ◽  
Weslany Silvério Neto ◽  
João Paulo Simões Dutra ◽  
Fabricio Machado

Medical devices are important diagnosis and therapy tools for several diseases which include a wide range of products. Technological advances in this area have been proposed to reduce adverse complication incidences. New technologies and manufacturing processes, as well as the development of new materials or medical devices with modified surface and the use of biodegradable polymeric devices such as a substrate for cell culture in the field of tissue engineering, have attracted considerable attention in recent years by the scientific community intended to produce medical devices with superior properties and morphology. This review article focused on implantable devices, addresses the major advances in the biomedical field related to the devices manufacture processes such as 3D printing and hot melting extrusion, and the use of polymer matrices composed of copolymers, blends, nanocomposites or grafted with antiproliferative drugs for manufacturing and/or coating the devices surface.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3208
Author(s):  
Eva María Rubio ◽  
Ana María Camacho

The Special Issue of the Manufacturing Engineering Society 2020 (SIMES-2020) has been launched as a joint issue of the journals “Materials” and “Applied Sciences”. The 17 contributions published in this Special Issue of Materials present cutting-edge advances in the field of Manufacturing Engineering, focusing on additive manufacturing and 3D printing; advances and innovations in manufacturing processes; sustainable and green manufacturing; manufacturing of new materials; manufacturing systems: machines, equipment and tooling; robotics, mechatronics and manufacturing automation; metrology and quality in manufacturing; Industry 4.0; design, modeling and simulation in manufacturing engineering. Among them, this issue highlights that the topic “advances and innovations in manufacturing processes” has collected a large number of contributions, followed by additive manufacturing and 3D printing; sustainable and green manufacturing; metrology and quality in manufacturing.


Circuit World ◽  
2016 ◽  
Vol 42 (1) ◽  
pp. 32-36 ◽  
Author(s):  
Michal Baszynski ◽  
Edward Ramotowski ◽  
Dariusz Ostaszewski ◽  
Tomasz Klej ◽  
Mariusz Wojcik ◽  
...  

Purpose – The purpose of this paper is to evaluate thermal properties of printed circuit board (PCB) made with use of new materials and technologies. Design/methodology/approach – Four PCBs with the same layout but made with use of different materials and technologies have been investigated using thermal camera to compare their thermal properties. Findings – The results show how important the thermal properties of PCBs are for providing effective heat dissipation, and how a simple alteration to the design can help to improve the thermal performance of electronic device. Proper layout, new materials and technologies of PCB manufacturing can significantly reduce the temperature of electronic components resulting in higher reliability of electronic and power electronic devices. Originality/value – This paper shows the advantages of new technologies and materials in PCB thermal management.


2021 ◽  
Vol 5 (5) ◽  
pp. 39-43
Author(s):  
Maksim V. SHEVLYUGIN ◽  
◽  
Daria V. SEMENOVA ◽  

When developing a high-speed contact suspension for railways electrified with alternating current, it is important to ensure that the electric rolling stock passes the neutral insert without turning off the current and without reducing the speed of movement. The article provides an analysis of previously developed devices in the field of power supply of electrified railways of single-phase alternating current, in which an attempt was made to pass an electric rolling stock of a neutral insert without disconnecting the load. The device of isolating coupling of a catenary and a neutral insert for high-speed railway lines electrified on alternating current is described. In this case, the passage of the neutral insert is carried out under current and braking of the electric rolling stock will not occur. Among other things, to improve the efficiency of high-speed contact suspension for railways electrified with alternating current, it is proposed to use new materials and new technologies that can be used in the device of insulating coupling of the catenary


Author(s):  
Laura Daniela Vallejo Melgarejo ◽  
Jose García ◽  
Ronald G. Reifenberger ◽  
Brittany Newell

This document condenses the results obtained when 3D printing lenses and their potential use as diffraction gratings using Digital Light Processing (DLP), as an additive manufacturing technique. This project investigated the feasibility of using DLP additive manufacturing for producing custom designed lenses and gratings. DLP was identified as the preferred manufacturing technology for gratings fabrication. Diffraction gratings take advantage of the anisotropy, inherent in additive manufacturing processes, to produce a collated pattern of multiple fringes on a substrate with completely smooth surfaces. The gratings are transmissive and were manufactured with slit separations of 10, 25 and 50 μm. More than 50 samples were printed at various build angles and mechanically treated for maximum optical transparency. The variables of the irradiance equation were obtained from photographs taken with an optical microscope. These values were used to estimate theoretical irradiance patterns of a diffraction grating and compared against the experimental 3-D printed grating. The resulting patterns were found to be remarkably similar in amplitude and distance between peaks when compared to theoretical values.


Sign in / Sign up

Export Citation Format

Share Document