Implantable Medical Devices and Tissue Engineering: An Overview of Manufacturing Processes and the Use of Polymeric Matrices for Manufacturing and Coating their Surfaces

2020 ◽  
Vol 27 (10) ◽  
pp. 1580-1599 ◽  
Author(s):  
Gabriel Victor Simões Dutra ◽  
Weslany Silvério Neto ◽  
João Paulo Simões Dutra ◽  
Fabricio Machado

Medical devices are important diagnosis and therapy tools for several diseases which include a wide range of products. Technological advances in this area have been proposed to reduce adverse complication incidences. New technologies and manufacturing processes, as well as the development of new materials or medical devices with modified surface and the use of biodegradable polymeric devices such as a substrate for cell culture in the field of tissue engineering, have attracted considerable attention in recent years by the scientific community intended to produce medical devices with superior properties and morphology. This review article focused on implantable devices, addresses the major advances in the biomedical field related to the devices manufacture processes such as 3D printing and hot melting extrusion, and the use of polymer matrices composed of copolymers, blends, nanocomposites or grafted with antiproliferative drugs for manufacturing and/or coating the devices surface.

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4604
Author(s):  
Bradley D. Nelson ◽  
Salil Sidharthan Karipott ◽  
Yvonne Wang ◽  
Keat Ghee Ong

Wireless technologies are incorporated in implantable devices since at least the 1950s. With remote data collection and control of implantable devices, these wireless technologies help researchers and clinicians to better understand diseases and to improve medical treatments. Today, wireless technologies are still more commonly used for research, with limited applications in a number of clinical implantable devices. Recent development and standardization of wireless technologies present a good opportunity for their wider use in other types of implantable devices, which will significantly improve the outcomes of many diseases or injuries. This review briefly describes some common wireless technologies and modern advancements, as well as their strengths and suitability for use in implantable medical devices. The applications of these wireless technologies in treatments of orthopedic and cardiovascular injuries and disorders are described. This review then concludes with a discussion on the technical challenges and potential solutions of implementing wireless technologies in implantable devices.


Author(s):  
Maria Lund Jensen ◽  
Jayme Coates

Development of implantable medical devices is becoming increasingly interesting for manufacturers, but identifying the right Human Factors Engineering (HFE) approach to ensure safe use and effectiveness is challenging. Most active implantable devices are highly complex; they are built on extremely advanced, compact technology, often comprise systems of several device elements and accessories, and they span various types of user interfaces which must facilitate diverse interaction performed by several different user groups throughout the lifetime of the device. Furthermore, since treatment with implantable devices is often vital and by definition involves surgical procedures, potential risks related to use error can be severe. A systematic mapping of Product System Elements and Life Cycle Stages can help early identification of Use Cases, and for example user groups and high-level use risks, to be accounted for via HFE throughout development to optimize Human Factors processes and patient outcomes. This paper presents a concrete matrix tool which can facilitate an early systematic approach to planning and frontloading of Human Factors Engineering activities in complex medical device development.


Author(s):  
Elizabeth S. Drexler ◽  
Andrew J. Slifka ◽  
Nicholas Barbosa ◽  
John W. Drexler

Environmental conditions can have major influence on the lifetimes and reliability of active implantable medical devices (e.g., neurostimulators, cochlear implants, internal cardioverter defibrillators). These environmental conditions can range from those encountered by the device in processing and production to transportation and storage to actual operation. Although one might argue that the environmental conditions found in the first two situations are harsher than those of the third, failures that result from those situations are screened before implantation. If we assume that the active medical device is in perfect operational form at the time it is implanted, it will still experience a host of environmental conditions that can affect reliability. In fact, the ultimate goal of these medical devices is to restore the patient, wherever they may reside, to normal activities. A list of some environmental conditions that may be experienced by a device implanted in a representative patient is found in Table 1.


2018 ◽  
Vol 39 (1/2) ◽  
pp. 2-11 ◽  
Author(s):  
Philomena W. Mwaniki

Purpose The purpose of this paper is to conceptualize the future of academic libraries in the era of new user needs, new skills for staff and services offered. The literature shows the evolution of new technologies and the implications they have on the staff, library services and new user needs. The discussions in this paper are surrounded by conceptualization of what the library products and services will be in future academic libraries. It also looks at future studies that explore opportunities for librarians to advance their professional role. Design/methodology/approach This is a literature-based conceptual paper that draws on a wide range of literature that hypothetically looks at the future roles of professional librarians, the collection, services and the evolution of technology on the new user needs. Findings The library today will give the basis for the future librarian’s role, the emerging user needs and impact of service delivery. Technological advances have also affected the establishment of library systems and services offered. The emerging future roles will generally depend on how advanced the libraries are in the region or country including Kenya. Originality/value This paper adds a flexible approach to the skills, services as a role of future librarians.


2021 ◽  
Vol 23 (12) ◽  
pp. 46-59
Author(s):  
B. Sathyabhama ◽  
◽  
B. Siva Shankari ◽  

Implantable Medical Devices (IMDs) reside within human bodies either temporarily or permanently, for diagnostic, monitoring, or therapeutic purposes. IMDs have a history of outstanding success in the treatment of many diseases, including heart diseases, neurological disorders, and deafness etc.,With the ever-increasing clinical need for implantable devices comes along with the continuous flow of technical challenges. Comparing with the commercial portable products, implantable devices share the same need to reduce size, weight and power. Thus, the need for device integration becomes very much imperative. There are many challenges faced when creating an implantable medical device. While this paper focuses on various techniques adapted to design a reliable device and also focus on the key electronic features of designing an ultra-low power implantable medical circuits for devices and systems.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Adam Khalifa ◽  
Sunwoo Lee ◽  
Alyosha Christopher Molnar ◽  
Sydney Cash

AbstractIn the past three decades, we have witnessed unprecedented progress in wireless implantable medical devices that can monitor physiological parameters and interface with the nervous system. These devices are beginning to transform healthcare. To provide an even more stable, safe, effective, and distributed interface, a new class of implantable devices is being developed; injectable wireless microdevices. Thanks to recent advances in micro/nanofabrication techniques and powering/communication methodologies, some wireless implantable devices are now on the scale of dust (< 0.5 mm), enabling their full injection with minimal insertion damage. Here we review state-of-the-art fully injectable microdevices, discuss their injection techniques, and address the current challenges and opportunities for future developments.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3487 ◽  
Author(s):  
Sadeque Reza Khan ◽  
Sumanth Kumar Pavuluri ◽  
Gerard Cummins ◽  
Marc P. Y. Desmulliez

Wireless power transfer (WPT) systems have become increasingly suitable solutions for the electrical powering of advanced multifunctional micro-electronic devices such as those found in current biomedical implants. The design and implementation of high power transfer efficiency WPT systems are, however, challenging. The size of the WPT system, the separation distance between the outside environment and location of the implanted medical device inside the body, the operating frequency and tissue safety due to power dissipation are key parameters to consider in the design of WPT systems. This article provides a systematic review of the wide range of WPT systems that have been investigated over the last two decades to improve overall system performance. The various strategies implemented to transfer wireless power in implantable medical devices (IMDs) were reviewed, which includes capacitive coupling, inductive coupling, magnetic resonance coupling and, more recently, acoustic and optical powering methods. The strengths and limitations of all these techniques are benchmarked against each other and particular emphasis is placed on comparing the implanted receiver size, the WPT distance, power transfer efficiency and tissue safety presented by the resulting systems. Necessary improvements and trends of each WPT techniques are also indicated per specific IMD.


2009 ◽  
Vol 64 (suppl_1) ◽  
pp. ONS11-ONS19 ◽  
Author(s):  
Ananth K. Vellimana ◽  
Daniel M. Sciubba ◽  
Joseph C. Noggle ◽  
George I. Jallo

Abstract Background: Heat has been used to control bleeding for thousands of years. In the 1920s, this concept was applied to the development of electrosurgical instruments and was used to control hemorrhage during surgical procedures. In the time that has passed since its first use, electrosurgery has evolved into modernday bipolar technology, involving a diverse group of coagulation instruments. Methods: We review the evolution and advances in electrosurgery, specifically bipolar coagulation, and the current technologies available for intraoperative hemorrhage control. Results: Electrosurgery has evolved to include highly accurate devices that deliver thermal energy via nonstick and noncontact methods. Over time, the operative range of coagulation instruments has increased dramatically with the incorporation of irrigating pathways, a wide range of instrument tips to perform various functions, and the application of bipolar technology to microforceps and microscissors for minimally invasive procedures. Conclusion: Electrosurgical devices and techniques, especially bipolar coagulation, have developed significantly with the availability of new technologies. This has led to better intraoperative coagulation control while minimizing iatrogenic damage associated with heat spread and tissue adherence, thus potentially improving outcomes for neurosurgical procedures.


2018 ◽  
Vol 2 (1) ◽  
pp. 12
Author(s):  
Sandra Moyano Sanz ◽  
Mercedes Valiente López

This research tries to design a modular part suitable for construction, with new materials and manufacturing processes. Polymers and 3D printing are the key elements in the process. It is about implanting a new model of modular part that is able to replace the conventional brick. With this research, we want to make known the new construction processes derived from 3D printing and how we can improve the existing technology. The main objective is to design a modular part, using additive manufacturing systems and plastic materials. Then we are going to determine the physical characteristics that the pieces must have, and the geometric possibilities that the manufacturing process allows us, as well as the materials that the pieces will be made. These pieces will be subject to all the actual tests to ceramic pieces, according to the current standard. Additionally, we will analyze the results obtained and compare them with an expensive ceramic brick to assess the advantages obtained. Finally, we will determine some conclusions derived from these investigations, and propose new study proposals. With this research, we intend to demonstrate that, although conventional brick are basic elements of construction and fulfils its functions perfectly, it is time to adapt the new technologies to the constructive methods.ResumenEste estudio trata de diseñar una pieza modular apropiada para la construcción mediante nuevos procesos de producción y nuevos materiales. Los polímeros y la impresión 3D son los elementos clave del proceso. Además, se estudia implantar un nuevo modelo de pieza modular que sea capaz de sustituir al ladrillo convencional. Con esta investigación queremos divulgar los nuevos procesos asociados a la impresión 3D y como podemos mejorar la tecnología existente. El objetivo principal es diseñar una pieza modular, usando sistemas de fabricación aditiva y materiales plásticos. Posteriormente vamos a determinar las características físicas que deben tener las piezas y las posibilidades en cuanto a la geometría que el proceso de producción nos permite, además de los materiales que compondrán las piezas. Estas piezas serán sujeto de todos los test estándar aplicables a las piezas cerámicas. Adicionalmente, analizaremos los resultados obtenidos y los compararemos con piezas de ladrillo de alta calidad para asegurarnos de las posibles ventajas obtenidas. Finalmente, haremos algunas conclusiones derivadas del estudio, y se harán propuestas para nuevas vías de estudio. Con la investigación tenemos la intención de demostrar que aunque los ladrillos convencionales son elementos constructivos básicos, que cumplen su función perfectamente, es momento de adaptar las nuevas tecnologías a los métodos constructivos.


2020 ◽  
Vol 7 (1) ◽  
pp. 138-150

. Cyclodextrins (CDs) are cyclic oligossacharides which have been known and studied for almost 130 years. This review aims to highlight the most important findings registered over this time, the physicochemical properties, preparation methods and uses of cyclodextrins, with special focus on their recently discovered applications. Due to their unique conformation, cyclodextrins are able to encapsulate a wide range of chemical entities, impacting on their solubility, bioavailability, stability, and shelf-life. Their complex formation properties together with the production from natural sources opens the door for cyclodextrins to be used in numerous and varied industries. However, the most important consumer of these versatile sugars is represented by the biomedical domain, where cyclodextrins find uses in drug formulations, delivery systems, medical textiles, implantable devices, tissue engineering, and many other connex applications. Moreover, intense research is still performed for this compounds, to develop and extend their therapeutic potential and serve as promising alternatives for treatment of severe diseases.


Sign in / Sign up

Export Citation Format

Share Document