Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes?

OENO One ◽  
2009 ◽  
Vol 43 (3) ◽  
pp. 121 ◽  
Author(s):  
Cornelius Van Leeuwen ◽  
Olivier Trégoat ◽  
Xavier Choné ◽  
Benjamin Bois ◽  
David Pernet ◽  
...  

<p style="text-align: justify;"><strong>Aims</strong>: The impact of water deficit stress on vine shoot growth, berry weight, grape composition and overall vintage quality was investigated in Bordeaux vineyards. Methods for assessing water deficit stress were compared.</p><p style="text-align: justify;"><strong>Methods and results</strong>: Vine water status was assessed on three soil types during four vintages by means of stem water potential and carbon isotope discrimination measured on grape sugar. Regional water deficit was compared for a range of over 30 vintages by means of water balance modelling. It was shown that water deficit stress anticipated shoot growth slackening, limited berry weight and enhanced berry anthocyanin content. Berry sugar content was greatest when water deficit was mild. It was shown that stem water potential measurements and carbon isotope discrimination are accurate tools for assessing vine water status at plot scale. Seasonal water deficit at a regional scale can be correctly estimated by water balance models. Vintage quality in Bordeaux is determined by the intensity of water deficit stress rather than by the level of the temperatures.</p><p style="text-align: justify;"><strong>Conclusions</strong>: Vine phenology and grape ripening are highly dependent on water uptake conditions. Mild water deficit stress enhances grape quality for the production of red wines. Vine water status can accurately be assessed by means of stem water potential or carbon isotope discrimination measured on grape sugars. Quality losses through severe water stress can be avoided through the use of drought-adapted plant material, appropriate canopy management, yield reduction or the implementation of deficit irrigation.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: This study shows the key role of water deficits in the production of quality grapes for red wine production. Methods for assessing vine water status are compared and discussed. Among many existing methods, the accuracy of stem water potential, carbon isotope discrimination measured on grape sugar and water balance modelling are emphasized.</p>

OENO One ◽  
2000 ◽  
Vol 34 (4) ◽  
pp. 169
Author(s):  
Xavier Choné ◽  
Olivier Trégoat ◽  
Cornelis Van Leeuwen ◽  
Denis Dubourdieu

<p style="text-align: justify;">Vine water status is an important factor in grape quality. High tannin and anthocyanin content in red grape berries are related to moderate vine water deficits. Hence, a simple and sensitive indicator is required to determine vine water status and especially water constraint. Pressure chamber allows a quick and easy to practice determination of water status in the vineyard. Three applications of pressure chamber are known: predawn leaf water potential (ΨB), leaf water potential (ΨF) and stem water potential (ΨT). Only ΨB and ΨF are widely used on vines. In this survey ΨB, ΨF, ΨT and transpiration flow were measured on mature leaves to determine non-irrigated vine water status in field grown vines during the growing season. In California as well as in France, stem Ψ was the most discriminating indicator for both moderate and severe water deficits. In every plot surveyed ΨT was much better correlated to leaf transpiration than ΨF. Moreover, ΨT revealed nascent water deficit earlier than ΨB did. Among the three application of pressure chamber, ΨT was the only one to indicate short term water deficit after a rainfall. Hence, ΨT appears to be a useful indicator for grapevine management in both non-irrigated and irrigated vineyards.</p>


2021 ◽  
Vol 13 (9) ◽  
pp. 1837
Author(s):  
Eve Laroche-Pinel ◽  
Sylvie Duthoit ◽  
Mohanad Albughdadi ◽  
Anne D. Costard ◽  
Jacques Rousseau ◽  
...  

Wine growing needs to adapt to confront climate change. In fact, the lack of water becomes more and more important in many regions. Whereas vineyards have been located in dry areas for decades, so they need special resilient varieties and/or a sufficient water supply at key development stages in case of severe drought. With climate change and the decrease of water availability, some vineyard regions face difficulties because of unsuitable variety, wrong vine management or due to the limited water access. Decision support tools are therefore required to optimize water use or to adapt agronomic practices. This study aimed at monitoring vine water status at a large scale with Sentinel-2 images. The goal was to provide a solution that would give spatialized and temporal information throughout the season on the water status of the vines. For this purpose, thirty six plots were monitored in total over three years (2018, 2019 and 2020). Vine water status was measured with stem water potential in field measurements from pea size to ripening stage. Simultaneously Sentinel-2 images were downloaded and processed to extract band reflectance values and compute vegetation indices. In our study, we tested five supervised regression machine learning algorithms to find possible relationships between stem water potential and data acquired from Sentinel-2 images (bands reflectance values and vegetation indices). Regression model using Red, NIR, Red-Edge and SWIR bands gave promising result to predict stem water potential (R2=0.40, RMSE=0.26).


2021 ◽  
Author(s):  
Marta Rodríguez-Fernández ◽  
María Fandiño ◽  
Xesús Pablo González ◽  
Javier J. Cancela

&lt;p&gt;The estimation of the water status in the vineyard, is a very important factor, in which every day the winegrowers show more interest since it directly affects the quality and production in the vineyards. The situation generated by COVID-19 in viticulture, adds importance to tools that provide information of the hydric status of vineyard plants in a telematic way.&lt;/p&gt;&lt;p&gt;In the present study, the stem water potential in the 2018 and 2019 seasons, is analysed in a vineyard belonging to the Rias Baixas wine-growing area (Vilagarcia de Arousa, Spain), with 32 sampling points distributed throughout the plot, which allows the contrast and validation with the remote sensing methodology to estimate the water status of the vineyard using satellite images.&lt;/p&gt;&lt;p&gt;The satellite images have been downloaded from the Sentinel-2 satellite, on the closets available dates regarding the stem water potential measurements, carried out in the months of June to September, because this dates are considered the months in which vine plants have higher water requirements.&lt;/p&gt;&lt;p&gt;With satellite images, two spectral index related to the detection of water stress have been calculated: NDWI (Normalized Difference Water Index) and MSI (Moisture Stress Index). Stem water potential measurements, have allowed a linear regression with both index, to validate the use of these multispectral index to determine water stress in the vineyard.&lt;/p&gt;&lt;p&gt;Determination coefficients of r&lt;sup&gt;2&lt;/sup&gt;=0.62 and 0.67, have been obtained in July and August 2018 and 0.54 in June of 2019 for the NDWI index, as well as values of 0.53 and 0.63 in July 2018 and June 2019 respectively, when it has been analysed the MSI index.&lt;/p&gt;&lt;p&gt;Between both seasons, the difference observed, that implies slightly greater water stress in 2019, is reflected in the climate conditions during the summer months, with an average accumulated rainfall that doesn&amp;#8217;t exceed 46 mm of water. Although, the NDWI index has allowed to establish better relationships in the 2018 season respect to the MSI index and the 2019 season, (r&lt;sup&gt;2&lt;/sup&gt;=0.60 NDWI in 2018), as well as greater differences in terms of water stress presented in the vineyard.&lt;/p&gt;&lt;p&gt;With the spectral index calculated, it has been possible to validate the use of these index for the determination of the water stress of the vineyard plants, as an efficient, fast and less expensive method, which allows the application of an efficient irrigation system in the vineyard.&lt;/p&gt;


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2780
Author(s):  
Victor Blanco ◽  
Lee Kalcsits

Stem water potential (Ψstem) is considered to be the standard measure of plant water status. However, it is measured with the pressure chamber (PC), an equipment that can neither provide continuous information nor be automated, limiting its use. Recent developments of microtensiometers (MT; FloraPulse sensors), which can continuously measure water tension in woody tissue of the trunk of the tree, can potentially highlight the dynamic nature of plant water relations. Thus, this study aimed to validate and assess the usefulness of the MT by comparing the Ψstem provided by MT with those same measurements from the PC. Here, two irrigation treatments (a control and a deficit treatment) were applied in a pear (Pyrus communis L.) orchard in Washington State (USA) to capture the full range of water potentials in this environment. Discrete measurements of leaf gas exchange, canopy temperature and Ψstem measured with PC and MT were made every two hours for four days from dawn to sunset. There were strong linear relationships between the Ψstem-MT and Ψstem-PC (R2 > 0.8) and with vapor pressure deficit (R2 > 0.7). However, Ψstem-MT was more variable and lower than Ψstem-PC when Ψstem-MT was below −1.5 MPa, especially during the evening. Minimum Ψstem-MT occurred later in the afternoon compared to Ψstem-PC. Ψstem showed similar sensitivity and coefficients of variation for both PC and MT acquired data. Overall, the promising results achieved indicated the potential for MT to be used to continuously assess tree water status.


1994 ◽  
Vol 122 (2) ◽  
pp. 275-284 ◽  
Author(s):  
J. W. White ◽  
J. A. Castillo ◽  
J. R. Ehleringer ◽  
J. A. C. Garcia ◽  
S. P. Singh

SUMMARYAlthough direct selection for seed yield under water deficit can result in genetic gains in the common bean (Phaseolus vulgaris L.), progress could be enhanced through selection for additional traits that are related to underlying mechanisms of adaptation to water deficit. Carbon isotope discrimination (Δ) has received considerable attention as an indicator of water use efficiency and adaptation to water deficit. To test the utility of Δ as a selection criterion, Δ and other traits were measured in F2 and F3 generations of a nine-parent diallel grown under rainfed conditions at two locations in Colombia with contrasting soil types. An irrigated trial was also conducted at one location. Significant (P 0·05) differences among parents, F2 and F3 were found for carbon isotope discrimination (Δ), leaf optical density (OD), leaf nitrogen (N) and potassium (K) concentrations, relative duration of pod-filling period (RDPF), shoot dry weight (SDW) and harvest index (HI). Effect of location and water regime and their interactions with genotype were also frequently significant. Heritability estimates, determined by regressing the F3 on the F2, ranged from 0·11±011 (S.E.) to 0·33 ±0·10 for OD, 0·22 ± 0·07 to 0·44±0·09 for N, 0·04±0·05 to 0·29±0·08 for K, 0·40 ± 0·08 to 0·43 ± 0·15 for RDPF and 0·30±0·22 to 1·00±0·24 for SDW. All values for Δ and HI did not differ significantly from zero. Correlations between seed yield and OD and RDPF were negative, whereas those with N, K, SDW, and HI were positive. For all traits, mean square values for general combining ability (GCA) were usuall significant and larger than those for specific combining ability (SCA). All significant GCA effects for Δ for ‘Rio Tibagi’, ‘San Cristobal 83’ and ‘Apetito’ were negative, while those for ‘Bayo Rio Grande’, ‘Bayo Criollo del Llano’, ‘Durango 222’ and BAT1224 were positive. Although Δappears unsuitable as an indirect criterion for selection for yield under water deficit, further study of genotypes exhibiting contrasting values of A might reveal differences in mechanisms of adaptation to water deficits, thus leading to other selection criteria or identification of valuable parental lines.


2011 ◽  
Vol 38 (5) ◽  
pp. 372 ◽  
Author(s):  
Gregorio Egea ◽  
Ian C. Dodd ◽  
María M. González-Real ◽  
Rafael Domingo ◽  
Alain Baille

To determine whether partial rootzone drying (PRD) optimised leaf gas exchange and soil–plant water relations in almond (Prunus dulcis (Mill.) D.A. Webb) compared with regulated deficit irrigation (RDI), a 2 year trial was conducted on field-grown trees in a semiarid climate. Five irrigation treatments were established: full irrigation (FI) where the trees were irrigated at 100% of the standard crop evapotranspiration (ETc); three PRD treatments (PRD70, PRD50 and PRD30) that applied 70, 50 and 30% ETc, respectively; and a commercially practiced RDI treatment that applied 50% ETc during the kernel-filling stage and 100% ETc during the remainder of the growth season. Measurements of volumetric soil moisture content in the soil profile (0–100 cm), predawn leaf water potential (Ψpd), midday stem water potential (Ψms), midday leaf gas exchange and trunk diameter fluctuations (TDF) were made during two growing seasons. The diurnal patterns of leaf gas exchange and stem water potential (Ψs) were appraised during the kernel-filling stage in all irrigation regimes. When tree water relations were assessed at solar noon, PRD did not show differences in either leaf gas exchange or tree water status compared with RDI. At similar average soil moisture status (adjudged by similar Ψpd), PRD50 trees had higher water status than RDI trees in the afternoon, as confirmed by Ψs and TDF. Although irrigation placement showed no effects on diurnal stomatal regulation, diurnal leaf net photosynthesis (Al) was substantially less limited in PRD50 than in RDI trees, indicating that PRD improved leaf-level water use efficiency.


Sign in / Sign up

Export Citation Format

Share Document