scholarly journals Microbial stabilization of grape musts and wines using coiled UV-C reactor

OENO One ◽  
2020 ◽  
Vol 54 (1) ◽  
Author(s):  
Rémy Junqua ◽  
Emmanuel Vinsonneau ◽  
Rémy Ghidossi

UV-C light is well known for its germicidal properties and is widely used for water disinfection. However, its low penetration into absorbing liquids, such as wines and musts, reduces drastically the microbial inactivation effectiveness. Additionally, wines require UV-C doses to be as low as possible to avoid any possible light-struck flavors. In order to add to the technologies that allow the reduction of SO2 use, a coiled UV-C reactor was designed to inactivate microorganisms in wines and musts. Due to its unique hydrodynamic characteristics, this design could improve the exposure probabilities of the microorganisms to the UV-C light in absorbing liquids. In a first step, theoretical and measured fluid dynamics parameters such as Dean number were employed to improve the operating conditions of the reactor. The higher the Dean number, the higher the UV-C dose delivery efficiency in this reactor, and thus the lower the dose required to inactivate a given load of microorganisms. The second step investigated the impact of different wines on microbial inactivation efficiency and the UV-C doses required to inactivate microorganisms frequently found in wines. White and rosé wines, with low absorbances at 254 nm, required lower doses (≈ 600 J/L) than red wine (≈ 5000 J/L) because their absorption coefficient is ten times lower. The tolerance of microbial strains to UV-C treatments was variable, with higher resistance observed for yeast than for bacteria. In the third step, treatments conducted at semi-industrial scale showed that physicochemical and sensorial properties of wines and musts were not altered, highlighting the possible relevance of such a reactor on an industrial scale. Highlights: • Design of a coiled UV-C reactor for microbial stabilization of wines and musts• Focus on inactivation efficiency in multiple strains and wine varieties• Chemical and sensorial analyses to ensure treatment does not affect the organoleptic properties of the product

Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1314
Author(s):  
Falk ◽  
Blatchley ◽  
Kuechler ◽  
Meyer ◽  
Pickens ◽  
...  

Current regulatory codes for swimming pool disinfection separately regulate free chlorine (FC) and cyanuric acid (CYA). It is well-known that CYA affects disinfection rates by reversibly binding to FC in aqueous solutions. However, limits for these regulated parameters have neither systematically accounted for this chemistry nor been based on the risk of gastrointestinal illness. This study was intended to determine the minimum concentration of FC relative to CYA based on the risk of gastrointestinal illness from normal fecal sloughing of selected pathogens and to find a simple regulatory rule for jointly managing FC and CYA for consistent disinfection. Literature data on CYA’s effect on microbial inactivation rates were reanalyzed based on the equilibria governing hypochlorous acid (HOCl) concentration. A model was developed that considers the rates of pathogen introduction into pool water, disinfection, turbulent diffusive transport, and pathogen uptake by swimmers to calculate the associated risk of illness. Model results were compared to U.S. Environmental Protection Agency (EPA) untreated recreational water acceptable gastrointestinal illness risk. For Cryptosporidium, correlation between log inactivation and Chick–Watson Ct was far better when C refers to HOCl concentration than to FC (r = −0.96 vs. −0.06). The HOCl concentration had a small variation (± 1.8%) at a constant CYA/FC ratio for typical FC and CYA ranges in swimming pools. In 27 U.S. states, the allowed FC and CYA results in HOCl concentrations spanning more than a factor of 500. Using conservative values for a high bather load pool with 2 mg/L FC and 90 mg/L CYA, the model predicted a 0.071 annual probability of infection for Giardia, exceeding the EPA regulatory 0.036 limit for untreated recreational waters. FC and CYA concentrations in swimming pools should be jointly regulated as a ratio. We recommend a maximum CYA/FC ratio of 20.


Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 505 ◽  
Author(s):  
Hamid Reza Godini ◽  
Mohammadali Khadivi ◽  
Mohammadreza Azadi ◽  
Oliver Görke ◽  
Seyed Mahdi Jazayeri ◽  
...  

A multi-aspect analysis of low-pressure catalytic hydrogenation of CO2 for methanol production is reported in the first part (part I) of this paper. This includes an extensive review of distinguished low-pressure catalytic CO2-hydrogenation systems. Specifically, the results of the conducted systematic experimental investigation on the impacts of synthesis and micro-scale characteristics of the selected Cu/ZnO/Al2O3 model-catalysts on their activity and stability are discussed. The performance of the investigated Cu/ZnO/Al2O3 catalysts, synthesized via different methods, were tested under a targeted range of operating conditions in this research. Specifically, the performances of these tested Cu/ZnO/Al2O3 catalysts with regard to the impacts of the main operating parameters, namely H2/CO2 ratio (at stoichiometric -3-, average -6- and high -9- ratios), temperature (in the range of 160–260 °C) and the lower and upper values of physically achievable gas hourly space velocity (GHSV) (corresponding to 200 h−1 and 684 h−1, respectively), were analyzed. It was found that the catalyst prepared by the hydrolysis co-precipitation method, with a homogenously distributed copper content over its entire surface, provides a promising methanol yield of 21% at a reaction temperature of 200 °C, lowest tested GHSV, highest tested H2/CO2 ratio (9) and operating pressure (10 bar). This is in line with other promising results so far reported for this catalytic system even in pilot-plant scale, highlighting its potential for large-scale methanol production. To analyze the findings in more details, the thermal-reaction performance of the system, specifically with regard to the impact of GHSV on the CO2-conversion and methanol selectivity, and yield were experimentally investigated. Moreover, the stability of the selected catalysts, as another crucial factor for potential industrial operation of this system, was tested under continual long-term operation for 150 h, the reaction-reductive shifting-atmospheres and also even after introducing oxygen to the catalyst surface followed by hydrogen reduction-reaction tests. Only the latter state was found to affect the stable performance of the screened catalysts in this research. In addition, the reported experimental reactor performances have been analyzed in the light of equilibrium-based calculated achievable performance of this reaction system. In the performed multi-scale analysis in this research, the requirements for establishing a selective-stable catalytic performance based on the catalyst- and reactor-scale analyses have been identified. This will be combined with the techno–economic performance analysis of the industrial-scale novel integrated process, utilizing the selected catalyst in this research, in the form of an add-on catalytic system under 10 bar pressure and H2/CO2 ratio (3), for efficiently reducing the overall CO2-emission from oxidative coupling of methane reactors, as reported in the second part (part II) of this paper.


2022 ◽  
Author(s):  
Pranav Vashisht ◽  
Brahmaiah Pendyala ◽  
Ankit Patras ◽  
Vybhav Vipul Sudhir Gopisetty ◽  
Ramasamy Ravi

UV-C processing of whole milk (WM) using a designed pilot scale Dean flow system was conducted at flow rates (11.88, 23.77, and 47.55 gph), Reynolds number ranges from 2890-11562 and the Dean number (at curved region) calculated as (648-2595) to inactivate bacterial endospores and virus particles. Biodosimetry studies were conducted to quantify the reduction equivalent fluence at selected experimental conditions. Results revealed that the dose distribution improved as flow rate increases, attributed to increase in Dean effects and turbulence intensity. Microbial inactivation studies conducted at 47.55 gph showed 0.91 (stdev:0.15) and 2.14 (stdev:0.19) log reduction/ pass for B. cereus endospores and T1UV phage. Linear inactivation trend was observed against number of passes which clearly demonstrates equivalent dose delivery during each pass. Lipid peroxidation value and volatile profile did not change significantly at UV dose of 60 mJ/cm 2. Lower E EO value signifies the higher electrical efficiency of the system.


2005 ◽  
Vol 33 (3) ◽  
pp. 156-178 ◽  
Author(s):  
T. J. LaClair ◽  
C. Zarak

Abstract Operating temperature is critical to the endurance life of a tire. Fundamental differences between operations of a tire on a flat surface, as experienced in normal highway use, and on a cylindrical test drum may result in a substantially higher tire temperature in the latter case. Nonetheless, cylindrical road wheels are widely used in the industry for tire endurance testing. This paper discusses the important effects of surface curvature on truck tire endurance testing and highlights the impact that curvature has on tire operating temperature. Temperature measurements made during testing on flat and curved surfaces under a range of load, pressure and speed conditions are presented. New tires and re-treaded tires of the same casing construction were evaluated to determine the effect that the tread rubber and pattern have on operating temperatures on the flat and curved test surfaces. The results of this study are used to suggest conditions on a road wheel that provide highway-equivalent operating conditions for truck tire endurance testing.


2019 ◽  
pp. 43-48
Author(s):  
Ben Nengjun ◽  
Zhou Pengfei ◽  
Oleksandr Labartkava ◽  
Mykhailo Samokhin

This work involves an analysis of high-chromium high-temperature deformable wieldable nickel alloys for use in GTE repair assemblies. It is shown that the alloys EP868 (VZh98) and Haynes 230 can be used in welded assemblies with an operating temperature of 800-1100 °C. The alloys Nimonic 81, Nimonic 91, IN 935, IN 939, and Nicrotan 2100 GT also have a high potential for use in welded assemblies. They are characterized by a combination of good weldability, high-temperature strength, and resistance to scaling. There have been conducted studies on high-temperature salt corrosion of model nickel alloys. They allowed establishing the patterns of the impact of base metal alloying with chromium, aluminum, titanium, cobalt, tungsten, molybdenum, niobium, tantalum and rare earth metals on the critical temperature of the start of salt corrosion Tcor and the alloy mass loss. It has been established that alloys with a moderate concentration (13-16%) of chromium can possess satisfactory hightemperature corrosion resistance (HTC resistance) under the operating conditions of ship GTE. The HTC resistance of CrAl-Ti alloys improves upon reaching the ratio Ti/Al ˃ 1. Meanwhile, the ratio Ti/Al ˂ 1 promotes the formation of corrosion products with low protective properties. The positive effect of tantalum on the HTC resistance of alloys is manifested at higher test temperatures than that of titanium, and the total content of molybdenum and tungsten in alloys is limited by the condition 8Mo2 – 2W2 = 89. The presence of refractory elements stabilizes the strengthening phase and prevents formation of the ɳ-phase. However, their excess promotes formation of the embrittling topologically close packed (TCP) phases and boundary carbides of an unfavorable morphology. Based on the studies of the HTC resistance, there has been identified a class of model high-temperature corrosionresistant nickel alloys with a moderate or high chromium content (30%), Ti/Al ˃ 1, and a balanced content of refractory and rare-earth elements.


2014 ◽  
pp. 298-301 ◽  
Author(s):  
Arnaud Petit

Bois-Rouge factory, an 8000 t/d cane Reunionese sugarcane mill, has fully equipped its filtration station with vacuum belt press filters since 2010, the first one being installed in 2009. The present study deals with this 3-year experience and discusses operating conditions, electricity consumption, performance and optimisation. The comparison with the more classical rotary drum vacuum filter station of Le Gol sugar mill highlights advantages of vacuum belt press filters: high filtration efficiency, low filter cake mass and sucrose content, low total solids content in filtrate and low power consumption. However, this technology needs a mud conditioning step and requires a large amount of water to improve mud quality, mixing of flocculant and washing of filter belts. The impact on the energy balance of the sugar mill is significant. At Bois-Rouge mill, studies are underway to reduce the water consumption by recycling low d.s. filtrate and by dry cleaning the filter belts.


Author(s):  
И.В. Бачериков ◽  
Б.М. Локштанов

При проектировании открытых и закрытых хранилищ измельченных сыпучих материалов древесных материалов, таких как щепа и опилки, большое значение имеет угол естественного откоса (статический и динамический) этих материалов. В технической литературе приводятся противоречивые сведения о величине этих углов, что приводит к ошибкам при проектировании складов. В справочных данных не учитываются условия, в которых эксплуатируются емкости для хранения сыпучих материалов, свойства и состояние этих сыпучих материалов. В свою очередь, ошибки при проектировании приводят к проблемам (зависание, сводообразование, «затопление» и т. д.) и авариям при эксплуатации бункеров и силосов на производстве. В статье представлены сведения, посвященные влиянию влажности и температуры на угол естественного откоса сыпучих материалов. На основании лабораторных и натурных экспериментов, проведенных с помощью специально разработанных методик и установок, была скорректирована формула для определения углов естественного откоса (статического и динамического) для измельченных древесных материалов в зависимости от их фракционного и породного состава, влажности (абсолютной и относительной) и температуры. При помощи скорректированной формулы можно определить угол естественного откоса древесных сыпучих материалов со среднегеометрическим размером частицы от 0,5 мм до 15 мм (от древесной пыли до технологической щепы) в различных производственных условиях. Статья может быть полезна проектировщикам при расчете угла наклона граней выпускающей воронки бункеров и силосов предприятий лесной отрасли и целлюлозо-бумажной промышленности. In the design of open and closed storage warehouses chopped wood materials for bulk materials such as wood chips and sawdust, great importance has an angle of repose (static and dynamic) of these materials. In the technical literature are conflicting reports about the magnitude of these angles, which leads to errors in the design of warehouses. In the referencesdoes not take into account the conditions under which operated capacities for storage of bulk materials, and properties and condition of the bulk material. The design errors lead to problems (hanging, arching, «flooding», etc.) and accidents in the operation of hoppers and silos at the mills. The article provides information on the impact of humidity and temperature on the angle of repose of granular materials. On the basis of laboratory and field experiments, conducted with the help of specially developed techniques and facilities has been adjusted formula for determining the angle of repose (static and dynamic) for the shredded wood materials depending on their fractional and species composition, humidity (absolute and relative) and temperature. It is possible, by using the corrected formula, to determine the angle of repose of loose wood materials with average particle size of from 0.5 mm to 15 mm (wood dust to pulpchips) in various operating conditions. The article can be helpful to designers in the calculation of the angle of inclination of the funnel faces produces bunkers and silos forest industries and pulp and paper industry.


2008 ◽  
Vol 43 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Linda Wojcicka ◽  
Carole Baxter ◽  
Ron Hofmann

Abstract Microorganisms have been shown to survive drinking water disinfection and remain viable in disinfected waters despite the presence of disinfectant residuals. This may be partially attributed to protection by particulate matter. The aim of this study was to determine the effects of the presence of particulate matter on disinfection kinetics. Sphingomonas paucimobilis ATCC 10829 and Helicobacter pylori ATCC 43504 were used in inactivation experiments in the presence and absence of soil, corrosion, and wastewater particles. The results showed that the presence of such particles tended to inhibit chlorine and monochloramine inactivation, although the magnitude of the impact under the conditions tested was small (e.g., 1-log reduction in inactivation for several minutes of contact time in the presence of less than 1 mg/L of disinfectant).


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 461
Author(s):  
Fu Yang ◽  
Zhengkun Huang ◽  
Jun Huang ◽  
Chongde Wu ◽  
Rongqing Zhou ◽  
...  

Ultrafiltration is a promising, environment-friendly alternative to the current physicochemical-based tannery wastewater treatment. In this work, ultrafiltration was employed to treat the tanning wastewater as an upstream process of the Zero Liquid Discharge (ZLD) system in the leather industry. The filtration efficiency and fouling behaviors were analyzed to assess the impact of membrane material and operating conditions (shear rate on the membrane surface and transmembrane pressure). The models of resistance-in-series, fouling propensity, and pore blocking were used to provide a comprehensive analysis of such a process. The results show that the process efficiency is strongly dependent on the operating conditions, while the membranes of either PES or PVDF showed similar filtration performance and fouling behavior. Reversible resistance was the main obstacle for such process. Cake formation was the main pore blocking mechanism during such process, which was independent on the operating conditions and membrane materials. The increase in shear rate significantly increased the steady-state permeation flux, thus, the filtration efficiency was improved, which resulted from both the reduction in reversible resistance and the slow-down of fouling layer accumulate rate. This is the first time that the fouling behaviors of tanning wastewater ultrafiltration were comprehensively evaluated, thus providing crucial guidance for further scientific investigation and industrial application.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4034
Author(s):  
Paolo Iodice ◽  
Massimo Cardone

Among the alternative fuels existing for spark-ignition engines, ethanol is considered worldwide as an important renewable fuel when mixed with pure gasoline because of its favorable physicochemical properties. An in-depth and updated investigation on the issue of CO and HC engine out emissions related to use of ethanol/gasoline fuels in spark-ignition engines is therefore necessary. Starting from our experimental studies on engine out emissions of a last generation spark-ignition engine fueled with ethanol/gasoline fuels, the aim of this new investigation is to offer a complete literature review on the present state of ethanol combustion in last generation spark-ignition engines under real working conditions to clarify the possible change in CO and HC emissions. In the first section of this paper, a comparison between physicochemical properties of ethanol and gasoline is examined to assess the practicability of using ethanol as an alternative fuel for spark-ignition engines and to investigate the effect on engine out emissions and combustion efficiency. In the next section, this article focuses on the impact of ethanol/gasoline fuels on CO and HC formation. Many studies related to combustion characteristics and exhaust emissions in spark-ignition engines fueled with ethanol/gasoline fuels are thus discussed in detail. Most of these experimental investigations conclude that the addition of ethanol with gasoline fuel mixtures can really decrease the CO and HC exhaust emissions of last generation spark-ignition engines in several operating conditions.


Sign in / Sign up

Export Citation Format

Share Document