scholarly journals Kinetics and Thermodynamics Studies of Copper(II) Adsorption onto Activated Carbon Prepared from Salacca zalacca Peel

Molekul ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 63
Author(s):  
Dewi Yuanita Lestari ◽  
Endang Widjajanti Laksono

Highly porous and stable materials, such as alumina, silica, carbon, zeolite, and bentonite,  are well known and have been used as metal ion adsorbents. However, the use of biogenic carbon as adsorbent is relatively rare. The adsorption of copper(II) onto activated carbon extracted from Salcaca zalacca peel was studied. The effect of initial copper concentration, contact time, and a series temperature was studied. Adsorption was carried out in a batch technique. The adsorption equilibrium was reached after 60 minutes of contact time. The adsorption data had a better fitting line for the Langmuir isotherm model. The Langergren and also Ho and Mc Kay equations were used to predict the adsorption kinetics. The adsorption process obeyed a second-order kinetics model. The Thermodynamic parameters were ∆H°= -42.4180 kJ/mol; ∆S°= -0.0843 kJ/mol; ∆G°<0. These values indicated that the adsorption was exothermic and spontaneous. The low ∆G° value revealed that the main mechanism controlling the adsorption process was physisorption.

2008 ◽  
Vol 5 (4) ◽  
pp. 761-769 ◽  
Author(s):  
S. Madhavakrishnan ◽  
K. Manickavasagam ◽  
K. Rasappan ◽  
P. S. Syed Shabudeen ◽  
R. Venkatesh ◽  
...  

Activated carbon prepared from Ricinus communis Pericarp was used to remove Ni(II) from aqueous solution by adsorption. Batch mode adsorption experiments are carried out by varying contact time, metal-ion concentration, carbon concentration and pH to assess kinetic and equilibrium parameters. The adsorption data were modeled by using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity (Qo) calculated from the Langmuir isotherm was 31.15 mg/g of activated carbon at initial pH of 5.0±0.2 for the particle size 125-250 µm.


2019 ◽  
Author(s):  
Chem Int

An easy route for preparation emulsion of kaolinite (Al2Si2O5.4H2O) from Sweileh sand deposits, west Amman, Jordan by hydrochloric acid under continuous stirring for 4 h at room temperature was performed and nano kaolinite powder was used as an adsorbent for the removal of Cu(II), Zn(II) and Ni(II) ions. Nano kaolinite was characterized by XRD, FT-IR and SEM techniques. Effect of pH, adsorbent dose, initial metal ion concentration, contact time and temperature on adsorption process was examined. The negative values of ΔGo and the positive value of ΔHo revealed that the adsorption process was spontaneous and endothermic. The Langmuir isotherm model fitted well to metal ions adsorption data and the adsorption capacity. The kinetic data provided the best correlation of the adsorption with pseudo-second order kinetic model. In view of promising efficiency, the nano kaolinite can be employed for heavy metal ions adsorption.


2017 ◽  
Vol 57 (2) ◽  
Author(s):  
Guillermina Burillo ◽  
Juan Serrano-Gómez ◽  
Juan Bonifacio-Martínez

Polypropylene (PP) grafted with dimethylaminoethylmethacrylate (DMAEMA), was prepared by irradiation with a <sup>60</sup>Co γ source. The obtained PP-<em>g</em>-DMAEMA was used to study the Cr(VI) ion adsorption as a function of contact time, initial pH, initial concentration of metal ion and temperature. Chromium adsorption data on PP-<em>g</em>-DMAEMA at various initial concentration fit well the Freundlich and Langmuir isotherms. The maximum adsorption capacity (a<sub>max</sub>) was found to be 0.3103 × 0<sup>-4</sup> mol g<sup>-1</sup>. The thermodynamic parameters ΔH<sup>0</sup>, ΔG<sup>0</sup> and ΔS<sup>0</sup> were estimated showing the adsorption process to be exothermic and spontaneous.


2020 ◽  
Vol 16 (7) ◽  
pp. 880-892
Author(s):  
Şerife Parlayıcı ◽  
Kübra Tuna Sezer ◽  
Erol Pehlivan

Background: In this work, Cr (VI) adsorption on nano-ZrO2๏TiO2 impregnated orange wood sawdust (Zr๏Ti/OWS) and nano-ZrO2๏TiO2 impregnated peach stone shell (Zr๏Ti/PSS) was investigated by applying different adsorption parameters such as Cr (VI) concentrations, contact time, adsorbent dose, and pH for all adsorbents. Methods: The adsorbents were characterized by SEM and FT-IR. The equilibrium status was achieved after 120 min of contact time and optimum pH value around 2 were determined for Cr (VI) adsorption. Adsorption data in the equilibrium is well-assembled by the Langmuir model during the adsorption process. Results: Langmuir isotherm model showed a maximum adsorption value of OWS: 21.65 mg/g and Zr๏Ti/OWS: 27.25 mg/g. The same isotherm displayed a maximum adsorption value of PSS: 17.64 mg/g, and Zr๏Ti/PSS: 31.15 mg/g. Pseudo-second-order kinetic models (R2=0.99) were found to be the best models for describing the Cr (VI) adsorption reactions. Conclusıon: Thermodynamic parameters such as changes in ΔG°, ΔH°, and ΔS° have been estimated, and the process was found to be spontaneous.


2011 ◽  
Vol 46 (1) ◽  
pp. 101-104 ◽  
Author(s):  
S Naeem ◽  
U Zafar ◽  
T Amann

In this investigation, adsorption of cyanide has been studied by means of batch-technique. Percentage adsorption was determined for Rice Husk Ash (RHA)-Cyanide solution system as a function of i) contact time, ii) pH, iii) adsorbate concentration and iv) temperature. Adsorption data has been interpreted in terms of Freundlich and Langmuir equations. Thermodynamics parameters for the adsorption system have been determined at three different temperatures. The value of ΔH°=38.326KJ/mole and ΔG°=-6.117KJ/mole at 283°K suggest that the adsorption of cyanide on RHA is an endothermic and a spontaneous process.Key words: Cyanide; Rice husk ash (RHA); Adsorption Isotherms DOI: http://dx.doi.org/10.3329/bjsir.v46i1.3524 Bangladesh J. Sci. Ind. Res. 46(1), 101-104, 2011


2021 ◽  
Vol 1033 ◽  
pp. 82-86
Author(s):  
Tintin Mutiara ◽  
Andira Budi Trimartina ◽  
Rafika Erniza Putri ◽  
Achmad Chafidz

Industrial waste containing heavy metals can pollute the aquatic environment. One method that can be done to manage heavy waste is the adsorption method that uses adsorbent from cassava stem powder. This research was conducted to utilize cassava stem powder waste for the adsorption of Pb2 + metal ions. Cassava stem powder was mashed until it passed 100 mesh sieve. Cassava stems have a cellulose content of 70-80%, lignin 15-20%, ADF 15-20% and cellulose can be used as an absorber of heavy metals. The adsorption process is carried out with variations in pH, time and concentration under optimum conditions. In this adsorption involves the functional groups contained therein so that the interaction between the adsorbent with the metal ion Pb2 +. Based on the research, the optimum conditions were obtained at pH 6, 180 minutes contact time and 50 ppm concentration. This test is carried out using Atomic Absorption Spectroscopy (AAS).


Jurnal Kimia ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
W. P. Utoo1 ◽  
E. Santoso ◽  
G. Yuhaneka ◽  
A. I. Triantini ◽  
M. R. Fatqi ◽  
...  

The aim of this research is to get activated carbon from sugarcane bagasse with high adsorption capacity to Naphthol Yellow S and to know factors influencing the adsorption capacity. Activated carbon is prepared by incomplete combustion of sugracane bagasse. The resulting carbon is activated with H2SO4 with concentration variation of 0.5; 1.0; 1.5 and 2.0 M and is continued by calcination at 400 °C. The measurement of the surface area of ??activated carbon by the methylene blue method indicates that the activation process successfully extends the surface area of carbon from 31.87 m2/g before activation to 66-72 m2/g after activation. Activated carbon with concentration of 2.0 M H2SO4 showed the highest surface area of ??71.85 m2/g, however, the best adsorption was shown by activated carbon with a concentration of 0.5 M H2SO4 with the adsorption capacity of 83.93%. The adsorption test showed that the best amount of adsorbent was 0.2 g with contact time for 30 minutes. Prolonged contact time can decrease the amount of Naphthol Yellow S adsorbed. The best adsorption test result was shown by sample with activator concentration of 0,5 M, mass of 0,2 g and contact time of 30 min with adsorption capacity 95,81% or amount of dye adsorbed equal to 143,72 mg/g. The adsorption study also showed that the entire Naphthol Yellow S adsorption process followed the Langmuir isothemal adsorption model. Qualitative testing of real batik waste indicates that activated carbon can reduce the dyes waste containing Naphthol Yellow Sexhibited by the color of batik waste which is more faded.  


2019 ◽  
Vol 233 (2) ◽  
pp. 201-223 ◽  
Author(s):  
Khalida Naseem ◽  
Rahila Huma ◽  
Aiman Shahbaz ◽  
Jawaria Jamal ◽  
Muhammad Zia Ur Rehman ◽  
...  

Abstract This study describes the adsorption of Cu (II), Co (II) and Ni (II) ions from wastewater on Vigna radiata husk biomass. The ability of adsorbent to capture the metal ions has been found to be in the order of Ni (II)>Co (II) and Cu (II) depending upon the size and nature of metal ions to be adsorbed. It has been observed that percentage removal of Cu (II), Co (II) and Ni (II) ions increases with increase of adsorbent dosage, contact time and pH of the medium but up to a certain extent. Maximum adsorption capacity (qmax) for Cu (II), Co (II) and Ni (II) ions has been found to be 11.05, 15.04 and 19.88 mg/g, respectively, under optimum conditions of adsorbent dosage, contact time and pH of the medium. Langmuir model best fits the adsorption process with R2 value approaches to unity for all metal ions as compared to other models because adsorption sites are seemed to be equivalent and only monolayer adsorption may occur as a result of binding of metal ion with a functional moiety of adsorbent. Pseudo second order kinetic model best interprets the adsorption process of Cu (II), Co (II) and Ni (II) ions. Thermodynamic parameters such as negative value of Gibbs energy (∆G°) gives information about feasibility and spontaneity of the process. Adsorption process was found to be endothermic for Cu (II) ions while exothermic for Co (II) and Ni (II) ions as signified by the value of enthalpy change (∆H°). Husk biomass was recycled three times for removal of Ni (II) from aqueous medium to investigate its recoverability and reusability. Moreover V. radiata husk biomass has a potential to extract Cu (II) and Ni (II) from electroplating wastewater to overcome the industrial waste water pollution.


2018 ◽  
Vol 34 (5) ◽  
pp. 2548-2553 ◽  
Author(s):  
Naveen Chandra Joshi ◽  
Ajay Singh ◽  
Himanshu Rajput

In the present study, we have used the waste leaves of Myrica esculenta for the removal of Pb2+, Cd2+ and Zn2+ ions from the synthetically prepared waste water. The adsorption based removal process has been carried out under the batch system. The batch system was included pH, contact time, dosage, concentration and temperature. The maximum removal efficiency was achieved at optimized conditions i.e. higher contact time, higher pH, lower metal ion concentrations and moderate temperatures. The presence of various organic binding groups was characterized by FTIR spectroscopy. The percentage adsorption of Pb2+, Cd2+ and Zn2+ ions was found 97.02%, 92.52% and 81.99% at pH 6 after contact time 25 minutes. The data of adsorption were tested with Langmuir, Freundlich and Temkin isotherm models. The adsorption capacity of Pb2+, Cd2+ and Zn2+ ions was evaluated as 8.264, 5.617 and 7.751mgg-1 by Langmuir isotherm model.


2019 ◽  
Vol 14 (4) ◽  
pp. 897-907 ◽  
Author(s):  
Hosseinali Asgharnia ◽  
Hamidreza Nasehinia ◽  
Roohollah Rostami ◽  
Marziah Rahmani ◽  
Seyed Mahmoud Mehdinia

Abstract Phenol and its derivatives are organic pollutants with dangerous effects, such as poisoning, carcinogenicity, mutagenicity, and teratogenicity in humans and other organisms. In this study, the removal of phenol from aqueous solution by adsorption on silica and activated carbon of rice husk was investigated. In this regard, the effects of initial concentration of phenol, pH, dosage of the adsorbents, and contact time on the adsorption of phenol were investigated. The results showed that the maximum removal of phenol by rice husk silica (RHS) and rice husk activated carbon (RHAC) in the initial concentration of 1 mgL−1 phenol, 2 gL−1 adsorbent mass, 120 min contact time, and pH 5 (RHS) or pH 6 (RHAC) were obtained up to 91% and 97.88%, respectively. A significant correlation was also detected between increasing contact times and phenol removal for both adsorbents (p &lt; 0.01). The adsorption process for both of the adsorbents was also more compatible with the Langmuir isotherm. The results of this study showed that RHS and RHAC can be considered as natural and inexpensive adsorbents for water treatment.


Sign in / Sign up

Export Citation Format

Share Document