Spiral Bearing Lubrication with Viscosity Variation And Thermal Effect of Two Layer Fluid

2017 ◽  
Vol 6 (5) ◽  
Author(s):  
M. Ganapathi ◽  
S. Vijayakumarvarma ◽  
K.R.K. Prasad ◽  
Bharath Kumar

In this paper a fluid film equation for two layer fluids and generalized Reynolds equation for convergent and divergent spiral bearing is derived with thermal effect. It is applied to see the effect of pre-load factor, viscosity variation, eccentricity, peripheral layer thickness. Expressions for load, pressure and coefficient of friction are derived and are analyzed numerically. The effect of pre-load factor analyzed for convergent and divergent spiral bearings. When pre-load factor is zero then both convergent and divergent spiral bearings are becomes journal bearing. It is observed the dimensionless load capacity values form the tables. The spiral bearing bears more load capacity than journal bearing. The effects of viscosity variation and thermal effect on these parameters are also analyzed.

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Xiaohui Lin ◽  
Shuyun Jiang ◽  
Chengyu Hua ◽  
Feng Cheng

Oil aeration lubricant in high-speed journal bearing is composed of mixture of continuous phase liquid and discrete phase bubbles. This work establishes a thermohydrodynamic (THD) coupling model for this lubrication condition. The generalized Reynolds equation is derived by the continuity equation, Navier–Stokes equation, law of wall turbulence model, and bubble volume distribution function, and then a THD oil aeration turbulent lubrication model is established by coupling the generalized Reynolds equation, energy equation, force equilibrium equation of bubble, and population balance equations (PBEs). The coupled-equations are solved numerically to obtain the pressure distribution under oil aeration lubrication state, the equilibrium distribution of bubble volume, the turbulent velocity distribution, the bubble velocity distribution, and the temperature rise. The results show that the load capacity of a bearing with oil aeration lubrication model is higher than that of the same bearing with a pure oil lubrication model, and heat dissipation performance of the bearing under the oil aeration lubrication state is superior.


2016 ◽  
Vol 819 ◽  
pp. 474-478 ◽  
Author(s):  
T.V.V.L.N. Rao ◽  
A.M.A. Rani ◽  
T. Nagarajan ◽  
F.M. Hashim

This paper presents an analysis of porous layered long journal bearing lubricated with ferrofluid using displaced infinitely long wire magnetic field model. The ferrofluid flow in the porous region is analyzed using modified Brinkman model. Nondimensional pressure and shear stress expressions are derived using Reynolds boundary conditions. Nondimensional load capacity and coefficient of friction are evaluated under the influence of permeability of porous media, porous layer thickness, lubricant layer thickness, magnetic field intensity and distance ratio parameter. A porous layered journal bearing lubricated with ferrofluid increases the load carrying capacity and reduces the coefficient of friction.


1994 ◽  
Vol 116 (3) ◽  
pp. 654-657 ◽  
Author(s):  
N. M. Bessonov

The theory of micropolar liquid lubrication (see Prakash and Sinha, 1975; Tipei, 1979; Singh and Sinha, 1982) takes into account only the increasing of effective viscosity in thin layers. Modern experiments (see Derjaguin et al., 1985) show that effective viscosity can increase or decrease and approaches to a certain limit (boundary viscosity), depending on the type of liquid and nature of the solid surface. A new generalized Reynolds equation that takes into account both these effects and also all possible situations in microrotation near the friction surface is derived in this work. An example using the equation for calculation of the journal bearing performance is given. It is shown that the friction coefficient can be sufficiently decreased without a noticeable change in the load capacity by regulation of interaction between micropolar lubricant and surfaces.


2014 ◽  
Vol 903 ◽  
pp. 215-220 ◽  
Author(s):  
T.V.V.L.N. Rao ◽  
A.M.A. Rani ◽  
T. Nagarajan ◽  
F.M. Hashim

Based on the approach of two-layered film consisting of different Newtonian viscosities, the present study examines the effects of partial slip bearing configuration on load capacity and friction coefficient for journal bearing. Navier slip boundary conditions are used to analyze partial slip configuration. A modified Reynolds equation for a journal bearing with two-layered film on a partial slip surface is presented. The modified Reynolds equation is derived taking into consideration of magnitude of lubricant layers film thickness, viscosities and the extent of partial slip on the bearing surface. The Reynolds boundary conditions are used in the analysis to predict nondimensional load capacity and coefficient of friction. Partial slip of bearing surfaces has a potential to improve load carrying capacity and reduce coefficient of friction for two-layered film journal bearing.


2004 ◽  
Vol 46 (1) ◽  
pp. 143-155 ◽  
Author(s):  
R. Raghavendra Rao ◽  
K. R. Prasad

AbstractA generalised form of the Reynolds equation for two symmetrical surfaces is derived by considering slip at the bearing surfaces. This equation is then used to study the effects of velocity-slip for the lubrication of journal bearings using half-Sommerfeld boundary conditions. Expressions for pressure and load capacity and the coefficient of friction are obtained and numerically analysed for various parameters. It is found that the load capacity decreases with slip. This is unfavourable for lubrication. The coefficient of friction decreases with a high viscous layer and increases with slip.


1967 ◽  
Vol 89 (2) ◽  
pp. 203-210 ◽  
Author(s):  
R. R. Donaldson

Reynolds’ equation for a full finite journal bearing lubricated by an incompressible fluid is solved by separation of variables to yield a general series solution. A resulting Hill equation is solved by Fourier series methods, and accurate eigenvalues and eigenvectors are calculated with a digital computer. The finite Sommerfeld problem is solved as an example, and precise values for the bearing load capacity are presented. Comparisons are made with the methods and numerical results of other authors.


Author(s):  
K Gururajan ◽  
J Prakash

The paper examines the effect of velocity slip in a thin-walled infinitely short rough porous journal bearing operating under steady conditions in a hydrodynamic regime. The analysis extends earlier work [1] in which the tangential velocity at the surface of the porous material was neglected. The problem is solved analytically together with associated boundary conditions. It is found that there exists a strong interaction between roughness and slip effects. A comparison with the case of an infinitely long journal bearing [2] shows that there are significant qualitative and quantitative differences in load capacity and coefficient of friction. However, the slip-induced variations in friction force are similar to those for an infinitely long journal bearing.


1968 ◽  
Vol 90 (1) ◽  
pp. 271-280 ◽  
Author(s):  
B. J. Hamrock

A linearized PH solution to the Reynolds equation was obtained while neglecting side leakage. The analysis was divided into two parts—the step and ridge regions. The pressure profile across the step and ridge region of the various pads which are placed around the journal was obtained from the linearized PH Reynolds equation. Knowing the pressure, the load components and attitude angle were calculated. The resulting equations were found to be a function of the bearing parameters (the eccentricity and compressibility number) and the step parameters (ratio of the stepped clearance to the ridge clearance, ratio of the angle extended by the ridge to the angle extended by the pad, and number of pads placed around the journal). The maximum load capacity can be determined by numerically differentiating the load with respect to the step bearing parameters while finding where the slope is zero. A series of data was run while varying the bearing parameters. The attitude angle was calculated for the various cases which were run.


2012 ◽  
Vol 58 (2) ◽  
Author(s):  
T. V. V. L. N. Rao ◽  
A. M. A. Rani ◽  
T. Nagarajan ◽  
F. M. Hashim

The present study examines the influence of partial texturing of bearing surfaces on improvement in load capacity and reduction in friction coefficient for slider and journal bearing. The geometry of partially textured slider and journal bearing considered in this work composed of a number of successive regions of groove and land configurations. The nondimensional pressure expressions for the partially textured slider and journal bearing are derived taking into consideration of texture geometry and extent of partial texture. Partial texturing has a potential to generate load carrying capacity and reduce coefficient of friction, even for nominally parallel bearing surfaces.


1970 ◽  
Vol 12 (2) ◽  
pp. 116-122 ◽  
Author(s):  
H. F. Black

The application of a perturbation in terms of simple correlations for friction in turbulent Couette and ‘screw’ flows, together with a further empirical assumption consonant with the experimental work of Smith and Fuller (1), leads to a pressure field equation identical in form with the Reynolds equation. The load capacity of journal bearings throughout most of the superlaminar range may be represented by a single curve, and existing laminar solutions may be applied with the parameters modified by Reynolds number. The theory is compared with published experimental results, and with the most successful theoretical treatment (4). The correlations obtained confirm the adequacy of the theory to predict performance in the superlaminar régime.


Sign in / Sign up

Export Citation Format

Share Document