scholarly journals Neuroprotective Effect of Anthocyanin Extract from Lycium ruthenicum Murray in Aβ1–42-induced Rat Model of AD

Author(s):  
Xueling Wu ◽  
Xiaoxiao Li ◽  
Shuang Liang ◽  
Yanxia Liu ◽  
Xueling Dai ◽  
...  

Alzheimer’s disease (AD) is an age-related neurodegenerative disease and is clinically characterized by cognitive impairment, memory loss, and personality disorder. Oligomers of amyloid beta-peptides (Aβ) and enhanced oxidative stress in senile plaques are prevalent pathologic hallmarks of AD. In this study, we detected the behavioral performance of Lycium ruthenicum Murray anthocyanin (LRA) -treated rats using the Morris water maze test and then investigated the effect of LRA on oxidative damage, neuronal apoptosis, and inflammatory response induced by Aβ1–42. Our results showed that LRA treatment markedly ameliorated the behavioral performance of Aβ1–42-induced rats and reduced the level of malondialdehyde, formation of protein carbonyl, and 8-hydroxy-2’-deoxygua-nosine. Furthermore, LRA also inhibited activated astrocytes and neuroinflammation via suppression of glial fibrillary acidic protein and tumor necrosis factor-alpha in the hippocampus of Aβ1–42-treated rat brain. These data suggest that LRA could be a potential anti-oxidant and anti-neuroinflammatory agent for the treatment of AD.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Gil-Yong Lee ◽  
Chan Lee ◽  
Gyu Hwan Park ◽  
Jung-Hee Jang

Increasing evidence suggests that neurodegenerative disorders such as Alzheimer’s disease (AD) are mediated via disruption of cholinergic neurons and enhanced oxidative stress. Therefore, attention has been focused on searching for antioxidant phytochemicals for the prevention and/or treatment of AD through their ability to fortify cholinergic function and antioxidant defense capacity. In this study, we have investigated the neuroprotective effect ofα-pinene (APN) against learning and memory impairment induced by scopolamine (SCO, 1 mg/kg, i.p.), a muscarinic receptor antagonist in C57BL/6 mice. Administration of APN (10 mg/kg, i.p.) significantly improved SCO-induced cognitive dysfunction as assessed by Y-maze and passive avoidance tests. In Morris water-maze test, APN effectively shortened the mean escape latency to find the hidden platform during training days. To further elucidate the molecular mechanisms underlying the neuroprotective effect of APN, the expression of proteins involved in the acetylcholine metabolism and antioxidant system was examined. Particularly, APN treatment increased mRNA expression of choline acetyltransferase in the cortex and protein levels of antioxidant enzymes such as heme oxygenase-1 and manganese superoxide dismutase in the hippocampus via activation of NF-E2-related factor 2. These findings suggest the possible neuroprotective potentials of APN for the management of dementia with learning and memory loss.


2018 ◽  
Vol 38 (2) ◽  
pp. 173-184 ◽  
Author(s):  
EK El-Sayed ◽  
AAE Ahmed ◽  
EM El Morsy ◽  
S Nofal

Parkinson’s disease (PD) is the second most common age-related neurodegenerative disease after Alzheimer’s disease, characterized by loss of dopaminergic neurons in substantia nigra pars compacta, accompanied by motor and nonmotor symptoms. The neuropathological hallmarks of PD are well reported, but the etiology of the disease is still undefined; several studies assume that oxidative stress, mitochondrial defects, and neuroinflammation play vital roles in the progress of the disease. The current study was established to investigate the neuroprotective effect of agmatine on a rotenone (ROT)-induced experimental model of PD. Adult male Sprague Dawley rats were subcutaneously injected with ROT at a dose of 2 mg/kg body weight for 35 days. Agmatine was injected intraperitoneally at 50 and 100 mg/kg body weight, 1 h prior to ROT administration. ROT-treated rats that received agmatine showed better performance on beam walking and an elevated number of rears within the cylinder test. In addition, agmatine reduced midbrain malondialdehyde as an indication of lipid peroxidation, pro-inflammatory cytokines including tumor necrosis factor alpha and interleukin-1β, and glial fibrillary acidic protein. Moreover, agmatine was responsible for preventing loss of tyrosine hydroxylase-positive neurons. In conclusion, our study showed that agmatine possesses a dose-dependent neuroprotective effect through its antioxidant and anti-inflammatory activities. These findings need further clinical investigations of agmatine as a promising neuroprotective agent for the future treatment of PD.


2018 ◽  
Vol 32 (6) ◽  
pp. 680-689 ◽  
Author(s):  
Marlon O. Pflueger ◽  
Rolf-Dieter Stieglitz ◽  
Patrick Lemoine ◽  
Thomas Leyhe

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 740-740
Author(s):  
Gerard Karsenty

Abstract We hypothesized that bone may secrete hormones that regulate energy metabolism and reproduction. Testing this hypothesis revealed that the osteoblast-specific secreted protein osteocalcin is a hormone regulating glucose homeostasis and male fertility by signaling through a GPCR, Gprc6a, expressed in pancreatic β bells and Leydig cells of the testes. The systematic exploration of osteocalcin biology, revealed that it regulates an unexpectedly large spectrum of physiological functions in the brain and peripheral organs and that it has most features of an antigeromic molecule. As will be presented at the meeting, this body of work suggests that harnessing osteocalcin for therapeutic purposes may be beneficial in the treatment of age-related diseases such as depression, age-related memory loss and the decline in muscle function seen in sarcopenia.


Author(s):  
Sujeong Yang ◽  
Sylvain Gigout ◽  
Angelo Molinaro ◽  
Yuko Naito-Matsui ◽  
Sam Hilton ◽  
...  

AbstractPerineuronal nets (PNNs) are chondroitin sulphate proteoglycan-containing structures on the neuronal surface that have been implicated in the control of neuroplasticity and memory. Age-related reduction of chondroitin 6-sulphates (C6S) leads to PNNs becoming more inhibitory. Here, we investigated whether manipulation of the chondroitin sulphate (CS) composition of the PNNs could restore neuroplasticity and alleviate memory deficits in aged mice. We first confirmed that aged mice (20-months) showed memory and plasticity deficits. They were able to retain or regain their cognitive ability when CSs were digested or PNNs were attenuated. We then explored the role of C6S in memory and neuroplasticity. Transgenic deletion of chondroitin 6-sulfotransferase (chst3) led to a reduction of permissive C6S, simulating aged brains. These animals showed very early memory loss at 11 weeks old. Importantly, restoring C6S levels in aged animals rescued the memory deficits and restored cortical long-term potentiation, suggesting a strategy to improve age-related memory impairment.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 132-133
Author(s):  
S Bloomer ◽  
Y C Cheng ◽  
H M Yakout ◽  
S W Kim

Abstract The effects of encapsulated sodium butyrate (SB), phytogenics (PH), or a combination were studied on intestinal health of nursery pigs. Phytogenics were blends of dry herbs and essential oil components. Forty-eight weaned pigs (21-d-old; 6.9 ± 0.6 kg BW) were individually housed, blocked by initial BW and sex, allotted to 4 dietary treatments (n = 12) in a RCBD, and fed for 33-d (P1: 0–7; P2: 7–19; and P3: 19–33). Treatments were arranged by 2 factors: SB (P1: 0.2% and P2: 0.1%) and PH (P3: 0.033%). Diets were formulated to meet or exceed NRC (2012) nutrient requirements and pigs were fed ad libitum. For each phase, ADG, ADFI, and G:F were measured. Fecal scores were assessed during d 3–19 and d 26–33. Blood samples were drawn in P2 and P3 to measure tumor necrosis factor alpha (TNF-α), IL-6, and immunoglobulin G (IgG). Four pigs at P2 and 8 pigs in P3 from each treatment were euthanized to collect jejunal tissue, jejunal mucosa, and ileal digesta to measure gut histology, TNF-α, IL-6, myeloperoxidase (MPO), malondialdehyde (MDA), and protein carbonyl. Data were analyzed using PROC MIXED of SAS. Fixed effects were treatments and random effects were blocks. In P2 and P1-2, SB decreased (P < 0.05) ADFI whereas no effect on ADG and G:F. In P2, SB tended to decrease (P = 0.063) villus height to crypt depth ratio (VH:CD) whereas increased (P < 0.05) enterocyte proliferation in P3. In P3 and overall, PH increased (P < 0.05) G:F. No changes were found in TNF-α, IL-6, MPO, MDA, IgG, and protein carbonyl. Conclusively, SB and a combinational use of SB and PH showed minimal effects on growth performance and gut health when added to the diets of nursery pigs. However, PH supplementation increased feed efficiency of nursery pigs during 19–33 d post-weaning.


2021 ◽  
pp. 1-9
Author(s):  
Guizhen Liu ◽  
Yuchuan Sun ◽  
Fei Liu

<b><i>Objective:</i></b> The purpose of this study was to explore the role of curcumin (Cur) in isoflurane (ISO)-induced learning and memory dysfunction in Sprague-Dawley rats and further elucidate the mechanism of the protective effect produced by Cur. <b><i>Methods:</i></b> Rat models of cognitive impairment were established by inhaling 3% ISO. The Morris water maze test was used to assess the cognitive function of rats. ELISA and qRT-PCR were used to analyze the protein levels of pro-inflammatory cytokines and expression levels of miR-181a-5p, respectively. <b><i>Results:</i></b> Cur significantly improved the ISO-induced cognitive dysfunction in rats and alleviated the ISO-induced neuroinflammation. miR-181a-5p was overexpressed in ISO-induced rats, while Cur treatment significantly reduced the expression of miR-181a-5p. Overexpression of miR-181a-5p promoted the cognitive impairment and the release of inflammatory cytokines and reversed the neuroprotective effect of Cur. <b><i>Conclusion:</i></b> Cur has a protective effect on ISO-induced cognitive dysfunction, which may be achieved by regulating the expression of miR-181a-5p.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shweta Kishor Sonawane ◽  
Vladimir N. Uversky ◽  
Subashchandrabose Chinnathambi

Abstract Background Amyloid aggregate deposition is the key feature of Alzheimer’s disease. The proteinaceous aggregates found in the afflicted brain are the intra-neuronal neurofibrillary tangles formed by the microtubule-associated protein Tau and extracellular deposits, senile plaques, of amyloid beta (Aβ) peptide proteolytically derived from the amyloid precursor protein. Accumulation of these aggregates has manifestations in the later stages of the disease, such as memory loss and cognitive inabilities originating from the neuronal dysfunction, neurodegeneration, and brain atrophy. Treatment of this disease at the late stages is difficult, and many clinical trials have failed. Hence, the goal is to find means capable of preventing the aggregation of these intrinsically disordered proteins by inhibiting the early stages of their pathological transformations. Polyphenols are known to be neuroprotective agents with the noticeable potential against many neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and Prion diseases. Methods We analyzed the capability of Baicalein to inhibit aggregation of human Tau protein by a multifactorial analysis that included several biophysical and biochemical techniques. Results The potency of Baicalein, a polyphenol from the Scutellaria baicalensis Georgi, against in vitro Tau aggregation and PHF dissolution has been screened and validated. ThS fluorescence assay revealed the potent inhibitory activity of Baicalein, whereas ANS revealed its mechanism of Tau inhibition viz. by oligomer capture and dissociation. In addition, Baicalein dissolved the preformed mature fibrils of Tau thereby possessing a dual target action. Tau oligomers formed by Baicalein were non-toxic to neuronal cells, highlighting its role as a potent molecule to be screened against AD. Conclusion In conclusion, Baicalein inhibits aggregation of hTau40 by enhancing the formation of SDS-stable oligomers and preventing fibril formation. Baicalein-induced oligomers do not affect the viability of the neuroblastoma cells. Therefore, Baicalein can be considered as a lead molecule against Tau pathology in AD.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Jintanaporn Wattanathorn ◽  
Jinatta Jittiwat ◽  
Terdthai Tongun ◽  
Supaporn Muchimapura ◽  
Kornkanok Ingkaninan

Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect ofZingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO). Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia.


Sign in / Sign up

Export Citation Format

Share Document