scholarly journals Hazard Quotients, Hazard Indexes, and Cancer Risks of Toxic Metals in PM10 during Firework Displays

Author(s):  
Siwatt Pongpiachan ◽  
Akihiro Iijima ◽  
Junji Cao

Bonfire night is a worldwide phenomenon given to numerous annual celebrations characterised by bonfires and fireworks. Since Thailand has no national ambient air quality standards for metal particulates, it is important to investigate the impacts of particulate injections on elevations of air pollutants and ecological health impacts resulting from firework displays. In this investigation, Pb and Ba were considered potential firework tracers because their concentrations were significantly higher during the episode and lower than/comparable with minimum detection limits during other periods, indicating that their elevated concentrations were principally due to pyrotechnic displays. Pb/Ca, Pb/Al, Pb/Mg, and Pb/Cu can be used to pin-point emissions from firework displays. Air mass backward trajectories (72 h) from the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model indicated that areas east and north-east of the study site were the main sources for the air transportation. Although the combined risk associated with levels of Pb, Cr, Co, Ni, Zn, As, Cd, V, and Mn was far below the standards mentioned in international guidelines, the lifetime cancer risks associated with As and Cr levels exceeded US-EPA guidelines, and may expose inhabitants of surrounding areas of Bangkok to elevated cancer risk.

Separations ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 35
Author(s):  
Jason Hoisington ◽  
Jason S. Herrington

A canister-based sampling method along with preconcentrator-Gas chromatography-Mass Spectrometry (GC-MS) analysis was applied to ethylene oxide (EtO or EO) and 75 other volatile organic compounds (VOCs) in ambient air. Ambient air can contain a large variety of VOCs, and thorough analysis requires non-discriminatory sampling and a chromatographic method capable of resolving a complex mixture. Canister collection of whole air samples allows for the collection of a wide range of volatile compounds, while the simultaneous analysis of ethylene oxide and other VOCs allows for faster throughput than separate methods. The method presented is based on US EPA Method TO-15A and allows for the detection of EtO from 18 to 2500 pptv. The method has an average accuracy of 104% and precision of 13% relative standard deviation (RSD), with an instrument run time of 32 min. In addition, a link between canister cleanliness and ethylene oxide growth is observed, and potential mechanisms and cleaning strategies are addressed.


1998 ◽  
Vol 41 (3) ◽  
Author(s):  
M. Giudici ◽  
L. Alfano

We present some results of a geoelectrical investigation program conducted in the Northern Apennines, namely in the Val d'Aveto and Bobbio window and surrounding areas. Field activity included the execution of more than 50 vertical electrical soundings with continuous polar dipole-dipole spread. We image the geometries of some deep geological structures; in particular we found a resistive background, whose resistivity is different along the geoelectrical profiles. In our interpretation the resistive background consists of subligurid and tuscan units underlying the alloctone Ligurid units in the area surrounding the Val d'Aveto and Bobbio window. The resistive background was not found, at least at the same depths, toward north-east. Therefore, the geoelectrical survey revealed the position of the front of the subligurid and Tuscan nappes toward the plain for a depth of about one kilometer.


Phytotaxa ◽  
2018 ◽  
Vol 374 (3) ◽  
pp. 185 ◽  
Author(s):  
FABIÁN A. MICHELANGELI ◽  
RENATO GOLDENBERG

We describe six new species of Melastomataceae from the Yanachaga-Chemillén National Park and surrounding areas from the Department of Pasco, Province of Oxapampa in Central Peru. Macrocentrum andinum is the first species of the genus described from the Andes, found along creeks at 400–500 m elev. and characterized by its anysophyllous leaves, pubescent stems and four-merous flowers. Meriania rubriflora is found in forests above 2200 m elev. and it is characterized by stem nodes with stipular flaps, leaves with an acute base and four merous, deep red flowers. Miconia palcazuana is found along rivers and streams at 300–400 m on the eastern flank of the park, and it can be distinguished by its flowers with pink anthers with glands on the connective and narrowly oblanceolate to elliptic-lanceolate leaves. Miconia yanachagaensis grows in the dwarf-sclerophyllous forests at the top of ridges and grasslands over 2800 m elev. and it is characterized by its long dendritic-pedicellate trichomes on the abaxial leaf surface, the stems flattened to terete and the presence of a conspicuous annular nodal line. Triolena rojasae is found growing on rocks along the Palcazú River and its tributaries, and it is characterized by its lanceolate-crenate leaves. Triolena vasquezii grows on the northern end of the Huancabamba canyon and the North East portion of the park and can be distinguished by its pustulate leaves with purple abaxial surface and anthers with two ventral appendages. We also present the first report of the genus Wurdastom for Peru.


2016 ◽  
Vol 16 (2) ◽  
pp. 597-617 ◽  
Author(s):  
M. F. Khan ◽  
M. T. Latif ◽  
W. H. Saw ◽  
N. Amil ◽  
M. S. M. Nadzir ◽  
...  

Abstract. The health implications of PM2.5 in the tropical region of Southeast Asia (SEA) are significant as PM2.5 can pose serious health concerns. PM2.5 concentration and sources here are strongly influenced by changes in the monsoon regime from the south-west quadrant to the north-east quadrant in the region. In this work, PM2.5 samples were collected at a semi-urban area using a high-volume air sampler at different seasons on 24 h basis. Analysis of trace elements and water-soluble ions was performed using inductively coupled plasma mass spectroscopy (ICP-MS) and ion chromatography (IC), respectively. Apportionment analysis of PM2.5 was carried out using the United States Environmental Protection Agency (US EPA) positive matrix factorization (PMF) 5.0 and a mass closure model. We quantitatively characterized the health risks posed to human populations through the inhalation of selected heavy metals in PM2.5. 48 % of the samples collected exceeded the World Health Organization (WHO) 24 h PM2.5 guideline but only 19 % of the samples exceeded 24 h US EPA National Ambient Air Quality Standard (NAAQS). The PM2.5 concentration was slightly higher during the north-east monsoon compared to south-west monsoon. The main trace metals identified were As, Pb, Cd, Ni, Mn, V, and Cr while the main ions were SO42−, NO3−, NH4+, and Na. The mass closure model identified four major sources of PM2.5 that account for 55 % of total mass balance. The four sources are mineral matter (MIN) (35 %), secondary inorganic aerosol (SIA) (11 %), sea salt (SS) (7 %), and trace elements (TE) (2 %). PMF 5.0 elucidated five potential sources: motor vehicle emissions coupled with biomass burning (31 %) were the most dominant, followed by marine/sulfate aerosol (20 %), coal burning (19 %), nitrate aerosol (17 %), and mineral/road dust (13 %). The hazard quotient (HQ) for four selected metals (Pb, As, Cd, and Ni) in PM2.5 mass was highest in PM2.5 mass from the coal burning source and least in PM2.5 mass originating from the mineral/road dust source. The main carcinogenic heavy metal of concern to health at the current location was As; the other heavy metals (Ni, Pb, and Cd) did not pose a significant cancer risk in PM2.5 mass concentration. Overall, the associated lifetime cancer risk posed by the exposure of hazardous metals in PM2.5 is 3–4 per 1 000 000 people at this location.


Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 592 ◽  
Author(s):  
Mariantonia Bencardino ◽  
Virginia Andreoli ◽  
Francesco D’Amore ◽  
Francesco De Simone ◽  
Valentino Mannarino ◽  
...  

This work provides the first continuous measurements of carbonaceous aerosol at the Global Atmosphere Watch (GAW) Monte Curcio regional station, within the southern Mediterranean basin. We specifically analyzed elemental carbon (EC) and organic carbon (OC) concentrations in particulate matter (PM) samples, collected from April to December during the two years of 2016 and 2017. The purpose of the study is to understand the behavior of both PM and carbonaceous species, in their fine and coarse size fraction, along with their seasonal variability. Based on 18 months of observations, we obtained a dataset that resulted in a vast range of variability. We found the maximum values in summer, mainly related to the enhanced formation of secondary pollutants owing to intense solar radiation, also due to the high frequency of wildfires in the surrounding areas, as well as to the reduced precipitation and aerosol-wet removal. We otherwise observed the lowest levels during fall, coinciding with well-ventilated conditions, low photochemical activity, higher precipitation amounts, and less frequency of Saharan dust episodes. We employed the HYSPLIT model to identify long-range transport from Saharan desert. We found that the Saharan dust events caused higher concentrations of PM and OC in the coarser size fraction whereas the wildfire events likely influenced the highest PM, OC, and EC concentrations we recorded for the finer fraction.


2014 ◽  
Vol 14 (11) ◽  
pp. 5639-5658 ◽  
Author(s):  
I. C. Rumsey ◽  
K. A. Cowen ◽  
J. T. Walker ◽  
T. J. Kelly ◽  
E. A. Hanft ◽  
...  

Abstract. Ambient air monitoring as part of the US Environmental Protection Agency's (US EPA's) Clean Air Status and Trends Network (CASTNet) currently uses filter packs to measure weekly integrated concentrations. The US EPA is interested in supplementing CASTNet with semi-continuous monitoring systems at select sites to characterize atmospheric chemistry and deposition of nitrogen and sulfur compounds at higher time resolution than the filter pack. The Monitor for AeRosols and GAses in ambient air (MARGA) measures water-soluble gases and aerosols at an hourly temporal resolution. The performance of the MARGA was assessed under the US EPA Environmental Technology Verification (ETV) program. The assessment was conducted in Research Triangle Park, North Carolina, from 8 September to 8 October 2010 and focused on gaseous SO2, HNO3, and NH3 and aerosol SO42-, NO3-, and NH4+. Precision of the MARGA was evaluated by calculating the median absolute relative percent difference (MARPD) between paired hourly results from duplicate MARGA units (MUs), with a performance goal of ≤ 25%. The accuracy of the MARGA was evaluated by calculating the MARPD for each MU relative to the average of the duplicate denuder/filter pack concentrations, with a performance goal of ≤ 40%. Accuracy was also evaluated by using linear regression, where MU concentrations were plotted against the average of the duplicate denuder/filter pack concentrations. From this, a linear least squares line of best fit was applied. The goal was for the slope of the line of best fit to be between 0.8 and 1.2. The MARGA performed well in comparison to the denuder/filter pack for SO2, SO42−, and NH4+, with all three compounds passing the accuracy and precision goals by a significant margin. The performance of the MARGA in measuring NO3- could not be evaluated due to the different sampling efficiency of coarse NO3- by the MUs and the filter pack. Estimates of "fine" NO3- were calculated for the MUs and the filter pack. Using this and results from a previous study, it is concluded that if the MUs and the filter pack were sampling the same particle size, the MUs would have good agreement in terms of precision and accuracy. The MARGA performed moderately well in measuring HNO3 and NH3, though neither met the linear regression slope goals. However, recommendations for improving the measurement of HNO3 and NH3 are discussed. It is concluded that SO42-, SO2, NO3-, HNO3, NH4+, and NH3 concentrations can be measured with acceptable accuracy and precision when the MARGA is operated in conjunction with the recommendations outlined in the manuscript.


Author(s):  
Kristian Svennevig ◽  
Peter Alsen ◽  
Pierpaolo Guarnieri ◽  
Jussi Hovikoski ◽  
Bodil Wesenberg Lauridsen ◽  
...  

The geological map sheet of Kilen in 1:100 000 scale covers the south-eastern part of the Carboniferous– Palaeogene Wandel Sea Basin in eastern North Greenland. The map area is dominated by the Flade Isblink ice cap, which separates several minor isolated landmasses. On the semi-nunatak of Kilen, the map is mainly based on oblique photogrammetry and stratigraphical field work while in Erik S. Henius Land, Nordostrundingen and northern Amdrup Land the map is based on field data collected during previous, 1:500 000 scale regional mapping. Twenty-one Palaeozoic–Mesozoic mappable units were identified on Kilen, while the surrounding areas comprise the Late Cretaceous Nakkehoved Formation to the north-east and the Late Carboniferous Foldedal Formation to the south-west. On Kilen, the description of Jurassic–Cretaceous units follows a recently published lithostratigraphy. The Upper Palaeozoic–lowermost Cretaceous strata comprise seven formations and an informal mélange unit. The overlying Lower–Upper Cretaceous succession comprises the Galadriel Fjeld and Sølverbæk Formations, which are subdivided into six and five units, respectively. In addition, the Quaternary Ymer Formation was mapped on south-east Kilen. The Upper Palaeozoic to Mesozoic strata of Kilen are faulted and folded. Several post-Coniacian NNW–SSE-trending normal faults are identified and found to be passively folded by a later N–S compressional event. A prominent subhorizontal fault, the Central Detachment, separates two thrust sheets, the Kilen Thrust Sheet in the footwall and the Hondal Elv Thrust Sheet in the hanging wall. The style of deformation and the structures found on Kilen are caused by compressional tectonics resulting in post-extensional, presumably Early Eocene, folding and thrusting and basin inversion. The structural history of the surrounding areas and their relation to Kilen await further studies.


Author(s):  
Atef M. F. Mohammed

The current study aimed to: i) Monitor levels of PM10, at Shebika, Haram, Masfala, Azizia, Awali and Mina in Makkah city, KSA during the period of 01 Shawwal 1436H – 27 Rabi Al-Awwal 1437H, by using LVS instruments; and; 2) assess health risk (non-cancer and cancer risks) on humans (children and adult) exposed to PM10 in ambient air of Makkah city.The results showed that: the high PM10 levels were found in Haram site, while the lower levels were found in Awali site. These levels were lower than that set for PM10 by PME (Daily limit of 340 µg/m3). Vehicles  emissions and constructions sources may be the main source of PM10 levels in Makkah city. The human health risk assessments showed that: the daily exposure doses of PM10 were ranked in the order: Ding > Ddermal > Dinh for children and adult in Makkah city. Ingestion of PM10 particles was the main exposure pathway for both children and adults. The HIs and cancer risk values were within the safe level, indicating that (non-carcinogenic and carcinogenic) risks for humans exposed to PM10 in Makkah city were negligible.


Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 121 ◽  
Author(s):  
Jun Hu ◽  
Han Wang ◽  
Jingqiao Zhang ◽  
Meng Zhang ◽  
Hefeng Zhang ◽  
...  

Beijing-Tianjin-Hebei (BTH) and its surrounding areas are one of the most polluted regions in China. Xingtai, as a heavy industrial city of BTH and its surrounding areas, has been experiencing a severe PM2.5 pollution in recent years, characterized by extremely high concentrations of PM2.5. In 2014, PM2.5 mass concentrations monitored by online instruments in urban areas of Xingtai were 116, 77, 128, and 200 µg m−3 in spring, summer, autumn and winter, respectively, with annually average concentrations of 130 µg m−3 exhibiting 3.7 times higher than National Ambient Air Quality Standard (NAAQS) value for PM2.5 (35 µg m−3). To identify PM2.5 emission sources, ambient PM2.5 samples were collected during both cold and warm periods in 2014 in urban areas of Xingtai. Organic carbon (OC), sulfate, nitrate, ammonium and elemental carbon (EC) were the dominant components of PM2.5, accounting for 13%, 11%, 12%, 11% and 8% in the cold period, respectively, and 11%, 12%, 9%, 6%, and 5% in the warm period, respectively. Source apportionment results indicated that coal combustion (24.4%) was the largest PM2.5 emission source, followed by secondary sulfate (22.2%), secondary nitrate (18.4%), vehicle exhaust dust (12.4%), fugitive dust (9.7%), construction dust (5.5%), soil dust (3.4%) and metallurgy dust (1.6%). Based on PM2.5 source apportionment results, some emission control measures, such as replacing bulk coal with clean energy sources, controlling coal consumption by coal-fired boiler upgrades, halting operations of unlicensed small polluters, and controlling fugitive and VOCs emission, were proposed to be implemented in order to improve Xingtai’s ambient air quality.


2020 ◽  
Vol 20 (1) ◽  
pp. 577-596 ◽  
Author(s):  
Camille Viatte ◽  
Tianze Wang ◽  
Martin Van Damme ◽  
Enrico Dammers ◽  
Frederik Meleux ◽  
...  

Abstract. The Paris megacity experiences frequent particulate matter (i.e.PM2.5, particulate matter with a diameter less than 2.5 µm) pollution episodes in spring (March–April). At this time of the year, large numbers of the particles consist of ammonium sulfate and nitrate which are formed from ammonia (NH3) released during fertilizer spreading practices and transported from the surrounding areas to Paris. There is still limited knowledge of the emission sources around Paris, their magnitude, and their seasonality. Using space-borne NH3 observation records of 10 years (2008–2017) and 5 years (2013–2017) provided by the Infrared Atmospheric Sounding Interferometer (IASI) and the Cross-Track Infrared Sounder (CrIS) instrument, regional patterns of NH3 variabilities (seasonal and interannual) are derived. Observations reveal identical high seasonal variability with three major NH3 hotspots found from March to August. The high interannual variability is discussed with respect to atmospheric total precipitation and temperature. A detailed analysis of the seasonal cycle is performed using both IASI and CrIS instrument data, together with outputs from the CHIMERE atmospheric model. For 2014 and 2015, the CHIMERE model shows coefficients of determination of 0.58 and 0.18 when compared to IASI and CrIS, respectively. With respect to spatial variability, the CHIMERE monthly NH3 concentrations in spring show a slight underrepresentation over Belgium and the United Kingdom and an overrepresentation in agricultural areas in the French Brittany–Pays de la Loire and Plateau du Jura region, as well as in northern Switzerland. In addition, PM2.5 concentrations derived from the CHIMERE model have been evaluated against surface measurements from the Airparif network over Paris, with which agreement was found (r2 = 0.56) with however an underestimation during spring pollution events. Using HYSPLIT cluster analysis of back trajectories, we show that NH3 total columns measured in spring over Paris are enhanced when air masses originate from the north-east (e.g. the Netherlands and Belgium), highlighting the importance of long-range transport in the NH3 budget over Paris. Variability in NH3 in the north-east region is likely to impact NH3 concentrations in the Parisian region since the cross-correlation function is above 0.3 (at lag = 0 and 1 d). Finally, we quantify the key meteorological parameters driving the specific conditions important for the formation of PM2.5 from NH3 in the Île-de-France region in spring. Data-driven results based on surface PM2.5 measurements from the Airparif network and IASI NH3 measurements show that a combination of the factors such as a low boundary layer of ∼500 m, a relatively low temperature of 5 ∘C, a high relative humidity of 70 %, and wind from the north-east contributes to a positive PM2.5 and NH3 correlation.


Sign in / Sign up

Export Citation Format

Share Document