scholarly journals The Impact of Secondary Phyllosilicate Minerals on the Engineering Properties of Various Igneous Aggregates from Greece

Author(s):  
Petros Petrounias ◽  
Panagiota P. Giannakopoulou ◽  
Aikaterini Rogkala ◽  
Paraskevi Lampropoulou ◽  
Eleni Koutsopoulou ◽  
...  

This paper investigates the effect of alteration on the physicomechanical properties of igneous rocks from various areas from Greece used as aggregates. The studied lithologies include dunites, harzburgites, lherzolites, gabbros, diabases, dacites and andesites. Quantitative petrographic analysis shows that the tested samples display various percentages of secondary phyllosilicate minerals. Mineral quantification of studied rock samples was performed by using a Rietveld method on X-Ray diffraction patterns of the studied aggregates. The aggregates are also tested to assign moisture content [w (%)], total porosity [nt (%)], uniaxial compressive strength [UCS (MPa)] and Los Angeles abrasion test [LA (%)]. The influence of secondary phyllosilicate minerals on physicomechanical behavior of tested samples determined using regression analysis and their derived equations. Regression analysis shows positive relationship between the percentage of phyllosilicate minerals of rocks and moisture content as well as with the total porosity values. The relationships between phyllosilicate minerals in the ultramafic and mafic samples and their mechanical properties show that the total rates of phyllosilicate mineral products result negatively in their mechanical properties, while the low percentage of phyllosilicate minerals in volcanic rocks are not able to define set of their engineering parameters.

Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 329 ◽  
Author(s):  
Petros Petrounias ◽  
Panagiota Giannakopoulou ◽  
Aikaterini Rogkala ◽  
Paraskevi Lampropoulou ◽  
Eleni Koutsopoulou ◽  
...  

This paper investigates the effect of alteration on the physicomechanical properties of igneous rocks used as aggregates, from various areas from Greece. The studied lithologies include serpentinized dunites, serpentinized harzburgites, serpentinized lherzolites, metamorphic gabbros, diabases, dacites and andesites. Quantitative petrographic analysis shows that the tested samples display various percentages of secondary phyllosilicate minerals. Mineral quantification of the studied rock samples was performed by using the Rietveld method on X-ray diffraction patterns. The samples were also tested to assign moisture content (w (%)), total porosity (nt (%)), uniaxial compressive strength (UCS (MPa)) and Los Angeles abrasion test (LA (%)). The influence of secondary phyllosilicate minerals on the physicomechanical behavior of the tested samples was determined using regression analysis and their derived equations. Regression analysis shows a positive relationship between the percentage of the phyllosilicate minerals of the rocks and the moisture content as well as with the total porosity values. In mafic and ultramafic rock samples, the relationships between the secondary phyllosilicate minerals and their physicomechanical properties have shown that the total amount of the secondary phyllosilicate minerals results negatively on their physicomechanical properties. On the other hand, the low percentage of phyllosilicate minerals in volcanic rocks can’t be able to define their engineering properties.


2021 ◽  
Vol 80 (3) ◽  
pp. 1963-1980
Author(s):  
Solomon Adomako ◽  
Christian John Engelsen ◽  
Rein Terje Thorstensen ◽  
Diego Maria Barbieri

AbstractRock aggregates constitute the enormous volume of inert construction material used around the globe. The petrologic description as igneous, sedimentary, and metamorphic types establishes the intrinsic formation pattern of the parent rock. The engineering properties of these rocks vary due to the differences in the transformation process (e.g. hydrothermal deposits) and weathering effect. The two most common mechanical tests used to investigate the performance of aggregates are the Los Angeles (LA) and micro-Deval (MD) tests. This study reviewed the geological parameters (including mineralogy, grain and crystal size, grain shape, and porosity) and the relationship to Los Angeles and micro-Deval tests. It was found that high content of primary minerals in rocks (e.g. quartz and feldspar) is a significant parameter for performance evaluation. Traces of secondary and accessory minerals also affect the performance of rocks, although in many cases it is based on the percentage. Furthermore, some studies showed that the effect of mineralogic composition on mechanical strength is not sufficient to draw final conclusions of mechanical performance; therefore, the impact of other textural characteristics should be considered. The disposition of grain size and crystal size (e.g. as result of lithification) showed that rocks composed of fine-grain textural composition of ≤ 1 mm enhanced fragmentation and wear resistance than medium and coarse grained (≥ 1 mm). The effect of grain shape was based on convex and concave shapes and flat and elongated apexes of tested samples. The equidimensional form descriptor of rocks somehow improved resistance to impact from LA than highly flat and elongated particles. Lastly, the distribution of pore space investigated by means of the saturation method mostly showed moderate (R = 0.50) to strong (R = 0.90) and positive correlations to LA and MD tests.


2013 ◽  
Vol 12 (04) ◽  
pp. 1350021 ◽  
Author(s):  
S. KAHRAMAN ◽  
M. S. DELIBALTA ◽  
R. COMAKLI

Compared to the indirect tests, the determination of the Los Angeles abrasion loss is time consuming and expensive, and requires a large amount of samples. For this reason, the prediction of Los Angeles abrasion loss from some indirect tests is useful for preliminary studies. In this study, Los Angeles abrasion, noise level (NL) measurement, density, and porosity tests were carried out on 27 different rock types such as igneous, metamorphic, and sedimentary. The test results were evaluated using the simple and multiple regression analysis. A good relation was found between the Los Angeles abrasion loss and the NL. In order to check the possibility of obtaining more significant relations, multiple regression analysis was performed by including density and porosity values. However, the regression analysis showed that the correlation coefficients of the multiple regression equations were slightly higher than that of the simple regression equation. Since the simple regression equation is practical and statistically significant, it is suggested for estimation purpose. In conclusion, it can be said that Los Angeles abrasion loss of aggregates can be reliably estimated from NL measurement.


2021 ◽  
Vol 36 (1) ◽  
pp. 25-36
Author(s):  
Reza Mikaeil ◽  
Akbar Esmaeilzadeh ◽  
Sara Aghaei ◽  
Sina Shaffiee Haghshenas ◽  
Amir Jafarpour ◽  
...  

One of the most significant factors in the estimation of dimension stone quarry cost is the production rate of rock cutting machines. Evaluating the production rate of chain-saw machines is a very significant and practical issue. In this research, it has been attempted to evaluate and select the suitable working-face for a quarry by examining the maximum production rate in the Dehbid and Shayan marble quarries. For this purpose, fi eld studies were carried out which included measuring operational characteristics of the chain-saw cutting machine, the production rate and sampling for laboratory tests from seven active case studies. Subsequently, the physical and mechanical properties of rocks including: Uniaxial Compressive Strength (UCS), Brazilian Tensile Strength (BTS), Los Angeles abrasion, quartz content, water absorption percentage, porosity, Schmidt hardness and grain size for all sample measurements were studied after transferring the samples to a rock-mechanics laboratory. Finally, the sawability of the quarried working-faces was evaluated using the PROMETHEE multi-criteria decision-making (MCDM) model according to the physical and mechanical properties. The results of the study indicated that the number 1 and 5 working-faces from the Dehbid and Shayan quarries are the most suitable working-faces in terms of production rate with the maximum recorded production values (4.95 and 3.1 m2 /h), and with net fl ow rates (2.67 and -0.36) respectively.


2014 ◽  
Vol 919-921 ◽  
pp. 791-794
Author(s):  
Lin Ma

Plane strain problem is currently prevalent in the loess engineering. However, this problem still using conventional triaxial test method for processing. So the paper conducted the plain strain test, analyze differences in plane strain experiments with conventional triaxial experiments under different moisture content and confining pressure. Research shows two points, the first one is the impact on the strength of the soil is more under moisture content than confining pressure, the other is that the soil strength under the plane strain condition is significantly greater than conventional triaxial conditions. It shows that the results were conservative under the plane strain problem at past. It played a certain role in guiding the engineering.


2020 ◽  
Vol 17 (2) ◽  
pp. 1059-1069
Author(s):  
Mohd Firdaus Md Dan ◽  
Edy Tonnizam Mohamad ◽  
Ibrahim Komoo ◽  
Aziman Madun ◽  
Siti Norsalkini Mohd Akip Tan

Engineering properties of tropical weathered granite mass have been widely investigated and classified for engineering purposes. However, the engineering properties of tropical boulder in weathered granite profile is poorly understood and not well classified. This study aims to examine and classify the physico-mechanical properties of granite boulder in completely weathered zone. A total of 34 in-situ boulders were examined from two granite quarries located in Southern Johor, Malaysia. Microstructure-mineralogical alterations were analyzed based on petrographic analysis and scanning electron microscopy (SEM). The mechanical properties were including dry density, porosity, point load strength, uniaxial compressive strength and permeability. Three properties were identified as significant indicators to differentiate between tropical boulder and completely weathered granite when it is evaluated from the soil investigation drilling work namely; texture characteristics, discolourations and degree of weathering. Analysis revealed that the alteration of microstructures and minerals such as feldspar, biotite, and plagioclase from corestone (Grade I/II) to saprolite (Grade IV/V) zone were significantly reduced the dry density, point load strength, uniaxial compressive strength and permeability with 32%, 99.5%, 98.6% and 84.8%, respectively. It has also significantly increased the porosity up to 11.6 times or 1065% from corestone to saprolite. The significant different of physico-mechanical properties of material surrounding boulder due to weathering can be classified and useful in evaluation of geotechnical design and geological engineering applications.


2013 ◽  
Vol 34 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Szymon Ciukaj ◽  
Marek Pronobis

Abstract The paper deals with the impact of co-firing biomass with coal in boilers on the dew point of the flue gas. Co-firing of biomass may have twofold implications on corrosion and fouling, which are the processes that determine the lowest acceptable flue gas outlet temperature and as a result, boiler efficiency. Both phenomena may be reduced by co-firing of usually low sulphur biomasses or enhanced due to increased moisture content of biomass leading to increased water dew point. The present study concerns the problem of low-temperature corrosion in utility boilers. The paper gives (in the form of diagrams and equations) a relationship between water dew point and moisture content of fuel mixture when co-firing coal and various biomasses. The regression analysis shows that despite significant differences in the characteristics of coals and these of additional fuels, which are planned for co-firing in large-scale power boilers, the water dew point can be described by a function given with the accuracy, which shall be satisfactory for engineering purposes. The discussion of the properties of biofuels indicates that the acid dew point surplus over the water dew point (Δtr = tr - twr) is not likely to exceed 10 K when co-firing biomass. The concluding remarks give recommendations for the appropriate operation of boilers in order to reduce risks associated with biomass co-combustion.


Author(s):  
L. K. Crouch ◽  
Greg Shirley ◽  
Gary Head ◽  
William A. Goodwin

Current methods of pre-evaluation of aggregates for bituminous surface courses such as the British Pendulum and British Polishing Wheel and chemical or mineralogical methods are only able to identify clearly aggregates with a high probability of performing well. There is little agreement among researchers as to what engineering properties will provide adequate frictional resistance at various average daily traffic (ADT) levels. The lack of agreement has led to conservative polish-resistance specifications and subsequently higher pavement costs. The Tennessee Textural Retention Method (TTRM) uses single size aggregate (6.35 to 9.52 mm), the Los Angeles Abrasion device, and a modified version of the AASHTO TP 33 device to evaluate particle shape and texture throughout simulated aging. In this evaluation, using 25 Tennessee aggregates, the TTRM was used to characterize aggregate polish-resistance performance at various ADT levels by comparing the results obtained on other aggregates with the results from field proven performers. The TTRM ranked all Tennessee proven performing siliceous limestones and gravels in the appropriate ADT category for which they are currently approved. In addition, new promising aggregate sources were revealed. The test method had a coefficient of variation for aggregate ratings of less than 3 percent for a nine-sample repeatability test. In addition, the maximum coefficient of variation of voids tests at any given aging revolution for an individual aggregate never exceeded 2 percent. The method may be helpful in pairing aggregate polish-resistance performance with pavement need based on ADT.


AGROINTEK ◽  
2021 ◽  
Vol 15 (3) ◽  
pp. 921-931
Author(s):  
Agustami Sitorus ◽  
Devianti Devianti ◽  
Ramayanty Bulan

The physical and mechanical properties of the material to be processed are fundamental and continue to be a challenge for researchers to design a machine appropriately. Studies of the soybean engineering properties have not been widely highlighted and reviewed. This makes researchers and engineers of soybean processing machines still have to search through experimentation or read deeply through scientific papers before applying it. Therefore, this paper presents highlights and reviews of studies related to the measurement and modelling of soybean engineering properties. The objective is to study methodologies uses and identify future research directions to get a result in more accuracy. Several papers are searched from various search engines for scientific articles that are available online. Some keywords and a combination of keywords used in the search process are “physical properties”, “mechanical properties”, “soybean grains” and “moisture-dependent”. The results show that ten scientific papers are strictly related to the measurement and modelling of the engineering properties of soybean. In general, the documents found were in the period 1993 to 2012. The research paper investigated the engineering properties of soybean in the moisture content ranges from 6.7% (d.b.) to 49.7% (d.b.). The widely studied physical properties are diameter, surface area, roundness, the weight of 1000 soybeans, bulk density, and true density associated with moisture content. Mechanical parameters investigated include friction coefficient, angle of repose, terminal velocity, angle of internal friction, rupture force, and rupture energy. On the one hand, some of the engineering properties of soybeans that have not yet been discovered are thermal, optical, and aerodynamic properties. On the other hand, the effect of soaking and blanching on changes in the engineering properties of soybean (physical, mechanical, thermal, optical, and aerodynamic) has not been done in-depth. Besides that, most of the soybean processing agro-industry requires engineering properties of soybean to be able to design their machines more precisely. One of the agro-industries that need data on the study results of the nature of engineering with these treatments is the tofu processing industry.


2016 ◽  
Vol 23 (4) ◽  
pp. 367-374
Author(s):  
Ying Yu ◽  
Yuqiu Yang ◽  
Kazuo Tanabe ◽  
Mitsuo Mastuda ◽  
Hiroyuki Hamada

AbstractA preliminary investigation on the impact properties and morphologies of unsaturated polyester reinforced with jute woven fabric recycled from used coffee bags with different moisture contents was conducted. The laminated structural effect of hybridization with glass woven fabric was also investigated. Jute/jute-laminated composites, and jute/glass/jute- and jute/jute/glass-laminated hybrid composites were fabricated by the hand lay-up method. Their impact properties were compared by drop-weight and the Izod impact tests. The acoustic emission (AE) technique was applied under a tensile load to detect micro-failure processes in the jute and jute/glass hybrid composites. The number of AE signals and the AE energy were monitored using two transducers with resonant frequencies of 140 kHz and 1 MHz. The results showed that the moisture content affected the mechanical properties of the composites. The strength and elongation at break of the jute yarn decreased with a decrease in moisture content. The AE characteristics and observations of the fracture surfaces revealed that the composites fabricated from jute fabric with low moisture content had a relatively higher initial fracture stress and higher resistance to micro-fractures. Moreover, the mechanical properties of the hybrid composites were significantly affected by the laminating structure.


Sign in / Sign up

Export Citation Format

Share Document