scholarly journals CORRIGENDUM to “Mechanical Properties, Thermal and Electrical Conductivity of 3D Printed ABS - Copper Ferrite Composites Via 3D Printing Technique”

2019 ◽  
pp. 089270571989244
2019 ◽  
pp. 089270571986940 ◽  
Author(s):  
Khairul Amali Hamzah ◽  
Cheow Keat Yeoh ◽  
Mazlee Mohd Noor ◽  
Pei Leng Teh ◽  
Yah Yun Aw ◽  
...  

This study examines the effect of particulate reinforcement on the mechanical properties of 3D printed acrylonitrile–butadiene–styrene (ABS). Copper ferrite (CuFe2O4) as a reinforcer with various loadings was used to print ABS composite specimen, namely, 8, 11 and 14 wt%. Mechanical testing such as tensile test and hardness test was performed on the printed samples. Specimens with 14 wt% of CuFe2O4 showed a 135% increase in tensile strength compared to the pure ABS specimens. Specimens printed with 14 wt% of CuFe2O4 are 14% harder compared to the pure ABS specimens. Thermal conductivity increased 93% for specimen loaded with 14 wt% reinforcer. Electrical conductivity shows a one-order increase for composite specimen compared to control specimen.


2021 ◽  
Vol 880 ◽  
pp. 97-102
Author(s):  
Ravivat Rugsaj ◽  
Chakrit Suvanjumrat

The spokes of airless tire or non-pneumatic tire (NPT) are normally made with thermoplastic polyurethane (TPU), which is highly elastic material, to replace inflation pressure in conventional pneumatic tire. However there are limitation in designing of complex spoke geometries due to difficulty in manufacturing process, which normally involve molding process. Recently, the 3D printing technique has been improved and can be used to create highly complex geometries with wide range of materials. However the mechanical properties of printed spoke structure using 3D printing technique are still required to design and development of NPT. This research aim to study the mechanical properties of TPU while varying in printing conditions. The specimens were prepared from actual NPT spoke using waterjet cutting technique and 3D printing technique according to the testing standard ASTM D412 and D638, respectively. The tensile tests were performed on the specimens with corresponding crosshead speed. The testing speed of 3D printed specimen were also varied to 100 and 200 mm/min to study the effects of strain rate on mechanical properties. The stress-strain relationships were obtained from tensile testing and the important mechanical properties were then evaluated. The mechanical properties of specimens prepared from actual NPT spokes and 3D printed specimens were then compared. The ultimate stress of specimens prepared from actual NPT spokes in radial direction and 3D printed specimens with 100% infill were found to be 32.92 and 25.47 MPa, respectively, while the breaking strain were found to be 12.98 and 10.87, respectively. Thus, the information obtained from this research can be used to ensure the possibility in creating NPT spoke using 3D printing technique based on elastic material such as TPU.


2017 ◽  
Vol 57 (3) ◽  
pp. 218-228
Author(s):  
Luboš Řehounek ◽  
Aleš Jíra

The main focus of this paper is to investigate and describe a novel biomaterial structure. The trabecular structure has only recently been recognized as a viable alternative for prostheses and implants and seems to have very promising biocompatibility and mechanical properties. The 3D printing technique was used to create test specimens. These specimens were then tested by nanoindentation and tensile and compression tests. A numerical model was created and curve-fitted to represent the mechanical behavior of the trabecular structure. A significant reduction in the values of Young’s modulus <em>E</em> was observed. The values of <em>E</em> for conventional implant materials are approximately 110–120GPa and the trabecular structure reached a value just below 1GPa. The next effort will be to apply the model onto a real implant. It is the “four leaf clover” implant variant by authors F. Denk Jr., A. Jíra and F. Denk Sr.


2017 ◽  
Vol 84 (9) ◽  
Author(s):  
Benedikt Hampel ◽  
Samuel Monshausen ◽  
Meinhard Schilling

AbstractIn consequence of the growing diversity of materials in the fused deposition modeling 3D printing technique, electrically conductive materials are commercially available. In this work two filaments based on thermoplastics filled with carbon or metal nanoparticles are analyzed in terms of their electrical conductance. The printing parameters to process the materials with the 3D printer are optimized with the design of experiments (DoE) method. A model to calculate the resistance of such 3D printed structures is presented and a demonstrator as a proof of concept was 3D printed based on these results. In addition, 3D printing of capacitors is investigated.


Author(s):  
Yuchen Mao ◽  
Takuya Miyazaki ◽  
Kohei Sakai ◽  
Jin Gong ◽  
Meifang Zhu ◽  
...  

Most of the phase change materials (PCMs) have been limited to use as functional additions or sealed in containers, and extra auxiliary equipment or supporting matrix is needed. The emergence of 3D printing technique has dramatically advanced the developments of materials and simplified production processes. This study focuses on a novel strategy to model thermal energy storage crystalline gels with three-dimensional architecture directly from liquid resin without supporting materials through light-induced polymerization 3D printing technique. A mask-projection stereolithography printer was used to measure the 3D printing test, and the printable characters of crystalline thermal energy storage P(SA-DMAA) gels with different molar ratios were evaluated. For the P(SA-DMMA) gels with small fraction of SA, the 3D fabrication was realized with higher printing precision both on mili- and micro-meter scales. As a comparison of 3D printed samples, P(SA-DMAA) gels made by other two methods, post-UV curing treatment after 3D printing and UV curing using conventional mold, were prepared. The 3D printed P(SA-DMAA) gels shown high crystallinity. Post&ndash;UV curing treatment was beneficial to full curing of 3D printed gels, but did not lead to the further improvement of crystal structure to get higher crystallinity. The P(SA-DMAA) crystalline gel having the highest energy storage enthalpy that reached 69.6 J&middot;g&minus;1 was developed. Its good thermoregulation property in the temperature range from 25 to 40 &deg;C was proved. The P(SA-DMAA) gels are feasible for practical applications as one kind of 3D printing material with thermal energy storage and thermoregulation functionality.


Nanoscale ◽  
2018 ◽  
Vol 10 (46) ◽  
pp. 21696-21702 ◽  
Author(s):  
Soomin Son ◽  
Pil-Hoon Jung ◽  
Jaemin Park ◽  
Dongwoo Chae ◽  
Daihong Huh ◽  
...  

ZnO-based hierarchical structures including nanoparticles (NPs), nanorods (NRs), and nanoflowers (NFs) on 3D-printed backbones were effectively fabricated via the combination of FDM 3D-printing technique and hydrothermal reaction.


2019 ◽  
Vol 168 ◽  
pp. 107664 ◽  
Author(s):  
Ming Li ◽  
Changliang Lai ◽  
Qing Zheng ◽  
Bing Han ◽  
Hao Wu ◽  
...  

Author(s):  
Sushrut Richa

Abstract: Forearm fracture has many management related problems. In order to regain its function anatomical reduction and immobility is very necessary. Traditional cast is not a satisfactory cast as it is heavy, poorly ventilated and often causes fracture related complications. The paper deals with application of 3D printing technique for suitable cast for forearm rehabilitation. Novel 3D printed cast is light weighted, ventilated, custom fit, strong and waterproof and substantial improvement over conventional orthopaedic cast. With the development in technology, it is expected that the cost of fabrication and its manufacturing time will be greatly reduced in the coming future. Keywords: bone fracture, immobility, rehabilitation, 3D printing, orthopaedic cast


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Sung-Joon Cho ◽  
Donghak Byun ◽  
Tai-Seung Nam ◽  
Seok-Yong Choi ◽  
Byung-Geun Lee ◽  
...  

Although additive manufacturing technologies, also known as 3D printing, were first introduced in the 1980s, they have recently gained remarkable popularity owing to decreased costs. 3D printing has already emerged as a viable technology in many industries; in particular, it is a good replacement for microfabrication technology. Microfabrication technology usually requires expensive clean room equipment and skilled engineers; however, 3D printing can reduce both cost and time dramatically. Although 3D printing technology has started to emerge into microfabrication manufacturing and medical applications, it is typically limited to creating mechanical structures such as hip prosthesis or dental implants. There have been increased interests in wearable devices and the critical part of such wearable devices is the sensing part to detect biosignals noninvasively. In this paper, we have built a 3D-printed sensor that can measure electroencephalogram and electrocardiogram from zebrafish. Despite measuring biosignals noninvasively from zebrafish has been known to be difficult due to that it is an underwater creature, we were able to successfully obtain electrophysiological information using the 3D-printed sensor. This 3D printing technique can accelerate the development of simple noninvasive sensors using affordable equipment and provide an economical solution to physiologists who are unfamiliar with complicated microfabrication techniques.


2019 ◽  
Vol 4 (7) ◽  
pp. 1318-1330 ◽  
Author(s):  
Simge Danaci ◽  
Lidia Protasova ◽  
Vesna Middelkoop ◽  
Nachiketa Ray ◽  
Michel Jouve ◽  
...  

This study presents the innovative Ni/alumina coated structured metal supports manufactured by 3D-printing technique and their methane productivity comparison in two different experimental set-ups: a lab scale reactor and a mini-pilot scale reactor.


Sign in / Sign up

Export Citation Format

Share Document