scholarly journals Evaluation of The Antifungal Activity Of Mentha x piperita (Lamiaceae) Of Pancalieri (Turin, Italy) Essential Oil And Its Synergistic Interaction With Azoles

Author(s):  
Vivian Tullio ◽  
Janira Roana ◽  
Daniela Scalas ◽  
Narcisa Mandras

The promising antimicrobial activity of essential oils (EOs) led researchers to use them in combination with antimicrobial drugs in order to reduce drug toxicity, side effects, and resistance with single agents. In Pancalieri (Turin, Italy), there is a local production of Mentha x piperita worldwide known as “Mentha of Pancalieri”. The EO from this Mentha is considered as one of the best peppermint EO in the world. In our research, we assessed the antifungal activity of “Mentha of Pancalieri” EO either alone or in combination with azole drugs (fluconazole, itraconazole, ketoconazole) against a wide panel of yeast and dermatophyte clinical isolates. The EO was analyzed by GC-MS and its antifungal properties were evaluated by MIC/MFC parameters, according to the CLSI guidelines, with some modifications. The interaction of peppermint EO with azoles was evaluated through the chequerboard and isobologram methods. Results suggest this EO exerts a fungicidal activity against yeasts, and a fungistatic activity against dermatophytes. Interaction studies with azoles indicate mainly synergistic profiles between itraconazole and peppermint EO vs. Candida spp., Cryptococcus neoformans and Trichophyton mentagrophytes. Peppermint of Pancalieri EO may act as a potential antifungal agent and may serve as a natural adjuvant for fungal infection treatment.

Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3148 ◽  
Author(s):  
Vivian Tullio ◽  
Janira Roana ◽  
Daniela Scalas ◽  
Narcisa Mandras

The promising antimicrobial activity of essential oils (EOs) has led researchers to use them in combination with antimicrobial drugs in order to reduce drug toxicity, side effects, and resistance to single agents. Mentha x piperita, known worldwide as “Mentha of Pancalieri”, is produced locally at Pancalieri (Turin, Italy). The EO from this Mentha species is considered as one of the best mint EOs in the world. In our research, we assessed the antifungal activity of “Mentha of Pancalieri” EO, either alone or in combination with azole drugs (fluconazole, itraconazole, ketoconazole) against a wide panel of yeast and dermatophyte clinical isolates. The EO was analyzed by GC-MS, and its antifungal properties were evaluated by minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) parameters, in accordance with the CLSI guidelines, with some modifications. The interaction of EO with azoles was evaluated through the chequerboard and isobologram methods. The results suggest that this EO exerts a fungicidal activity against yeasts and a fungistatic activity against dermatophytes. Interaction studies with azoles indicated mainly synergistic profiles between itraconazole and EO vs. Candida spp., Cryptococcus neoformans, and Trichophyton mentagrophytes. Thus, the “Mentha of Pancalieri” EO may act as a potential antifungal agent and could serve as a natural adjuvant for fungal infection treatment.


2014 ◽  
Vol 38 (6) ◽  
pp. 531-537 ◽  
Author(s):  
Rojane de Oliveira Paiva ◽  
Lucimar Ferreira Kneipp ◽  
Carla Marins Goular ◽  
Mariana Almeida Albuquerque ◽  
Aurea Echevarria

Mycotoxigenic fungi can compromise the quality of food, exposing human and animal health at risk. The antifungal activity of eight thiosemicarbazones (1-8) and nine semicarbazones (9-17) was evaluated against Aspergillus flavus, A. nomius, A. ochraceus, A. parasiticus and Fusarium verticillioides. Thiosemicarbazones had MIC values of 125-500 µg/ml. The thiosemicarbazones 1 and 2 exerted fungistatic activity against Aspergillus spp., and thiosemicarbazone 2 exerted fungicidal activity against F. verticillioides. Compound 2 showed an iron chelating effect of 63%. The ergosterol content of A. parasiticus had a decrease of 28 and 71% for the 31.2 and 62.5 µg/ml concentrations of thiosemicarbazone 2 compared to the control. The obtained results of antifungal activity revealed that thiosemicarbazone class was more active when compared to semicarbazone class and, the thiosemicarbazone 2 was the most active compound, specially, against Aspergillus spp.


2020 ◽  
Vol 58 (8) ◽  
pp. 1102-1113 ◽  
Author(s):  
Miguel Fernández de Ullivarri ◽  
Gabriela A Bulacios ◽  
Silvia A Navarro ◽  
Lucía Lanza ◽  
Lucia M Mendoza ◽  
...  

Abstract Candidiasis is a group of opportunistic infections caused by yeast of the genus Candida. The appearance of drug resistance and the adverse effects of current antifungal therapies require the search for new, more efficient therapeutic alternatives. Killer yeasts have aroused as suitable candidates for mining new antifungal compounds. Killer strains secrete antimicrobial proteins named killer toxins, with promissory antifungal activity. Here we found that the killer yeast Wickerhamomyces anomalus Cf20 and its cell-free supernatant (CFS) inhibited six pathogenic strains and one collection strain of Candida spp. The inhibition is mainly mediated by secreted killer toxins and, to a lesser extent, by volatile compounds such as acetic acid and ethyl acetate. A new large killer toxin (>180 kDa) was purified, which exerted 70–74% of the total CFS anti-Candida activity, and the previously described glucanase KTCf20 was inhibitory in a lesser extent as well. In addition, we demonstrated that Cf20 possesses the genes encoding for the β-1,3-glucanases WaExg1 and WaExg2, proteins with extensively studied antifungal activity, particularly WaExg2. Finally, the 10-fold concentrated CFS exerted a high candidacidal effect at 37°C, completely inhibiting the fungal growth, although the nonconcentrated CFS (RCF 1) had very limited fungistatic activity at this temperature. In conclusion, W. anomalus Cf20 produces different low and high molecular weight compounds with anti-Candida activity that could be used to design new therapies for candidiasis and as a source for novel antimicrobial compounds as well.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 688
Author(s):  
Antonio Rosato ◽  
Elisabetta Altini ◽  
Sabina Sblano ◽  
Lara Salvagno ◽  
Filippo Maggi ◽  
...  

According to recent studies, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) have shown a good antimicrobial and antifungal activity. Their association with essential oils (EOs) could be useful for the treatment of infections caused by Candida spp. The aim of this studyis to evaluate the synergistic antifungal activity of new combinations between Diclofenac Sodium Salt (DSS), a widely used NSAID, with EOs of Mentha x piperita, Pelargonium graveolens and Melaleuca alternifolia. The in-vitroantifungal activity was determined on different Candida strains. The determination of the chemical composition of EOs was carried out by gaschromatography-massspectrometry (GC-MS). Susceptibility testing of planktonic cells was performed by using the broth microdilution assay and checkerboard methods. Minimum Inhibitory Concentrations (MIC) of DSS was in a range from 1.02 to 2.05 mg/mL reaching a MIC value of 0.05 mg/mL when combined with Pelargonium graveolens (FICI= 0.23–0.35) or Menthapiperita (FICI= 0.22–0.30) EOs. These preliminary results show thatthe combination of the EOs with DSS improves the antifungal activity on all the tested Candida strains.


2021 ◽  
Vol 18 ◽  
Author(s):  
Mahendra Singh ◽  
Alka Alka ◽  
Kyung Eun Lee ◽  
Pradeep Kumar ◽  
Sang Gu Kang

Background: As per the World Health Organization survey, it has been found that dermatophyte infections are affecting around one-fourth of the world population. The dermatophytes are commonly keratinophilic in nature which can multiply and invade the keratinized tissues and affect various parts of the human body like nails, skin, and hair. The luliconazole is an antifungal drug utilized against dermatophytes which causes athlete's foot and ringworm etc. fungal infections of the skin or nails caused by Candida albicans (C.P. Robin) Berkhout and Trichophyton mentagrophytes (Robin) Blanchard. Objective: The study aimed to develop the luliconazole topical cream with turmeric oil and penetration enhancer to improve permeability and enhance antifungal activity. Methods: To prepare the luliconazole topical cream, various compositions of formulation were melted and mixed with varying concentrations of turmeric oil. The oil, drug, and aqueous phases were prepared separately and mixed stepwise in a vessel under continuous stirring at control conditions. Result: The optimized LC2 cream was showed pH 6.45±0.12, which is considered suitable to avoid irritation upon topical application. The LC2 cream formulation also showed significantly (p<0.05) more permeability with a permeation flux (0.347 mg/cm2/h) against an aqueous suspension of the drug (0.215 mg/cm2/h). The LC2 cream was followed the Higuchi model and showed the drug release from cream via a diffusion mechanism with super case II transport mechanism. Furthermore, the antifungal activity of optimized cream was found good than marketed cream. Conclusion: It is concluded that the prepared luliconazole cream can be an effective anti-fungal treatment with enhanced drug delivery into the skin to treat athlete's foot and ringworm etc. caused by dermatophytes namely C. albicans and Trichophyton spp.


2015 ◽  
Vol 57 (2) ◽  
pp. 165-167 ◽  
Author(s):  
Eduardo José J. MALLMANN ◽  
Francisco Afrânio CUNHA ◽  
Bruno N.M.F. CASTRO ◽  
Auberson Martins MACIEL ◽  
Everardo Albuquerque MENEZES ◽  
...  

Silver nanoparticles (AgNPs) are metal structures at the nanoscale. AgNPs have exhibited antimicrobial activities against fungi and bacteria; however synthesis of AgNPs can generate toxic waste during the reaction process. Accordingly, new routes using non-toxic compounds have been researched. The proposal of the present study was to synthesize AgNPs using ribose as a reducing agent and sodium dodecyl sulfate (SDS) as a stabilizer. The antifungal activity of these particles against C. albicans and C. tropicalis was also evaluated. Stable nanoparticles 12.5 ± 4.9 nm (mean ± SD) in size were obtained, which showed high activity against Candida spp. and could represent an alternative for fungal infection treatment.


2017 ◽  
Vol 9 (2) ◽  
pp. 71
Author(s):  
Nurhasanah Nurhasanah ◽  
Fauzia Andrini ◽  
Yulis Hamidy

Shallot (Allium ascalonicum L.) has been known as traditional medicine. Shallot which has same genus with garlic(Allium sativum L.) contains allicin that is also found in garlic and has been suspected has fungicidal activity toCandida albicans. It is supported by several researches. Therefore, shallot is suspected has antifungal activity too.The aim of this research was to know antifungal activity of shallot’s water extortion againsts Candida albicans invitro. This was a laboratory experimental research which used completely randomized design, with diffusion method.Shallot’s water extortion was devided into three concentrations, there were 50%, 100% and 200%. Ketoconazole 2%was positive control and aquadest was negative control. The result of this research based on analysis of varians(Anova), there was significant difference between several treatments and was confirmed with Duncan New MultipleRange Test (DNMRT) p<0,05, there was significant difference between 100% shallot’s water extortion with othertreatments, but there was no significant difference between 50% shallot’s water extortion with 200% shallot’s. Theconclusion was shallot’s water extortion had antifungal activity againsts Candida albicans with the best concentration100%, but it was lower than ketoconazole 2%.


2019 ◽  
Vol 18 (29) ◽  
pp. 2481-2490 ◽  
Author(s):  
Ana Cláudia de Macêdo Andrade ◽  
Pedro Luiz Rosalen ◽  
Irlan Almeida Freires ◽  
Luciana Scotti ◽  
Marcus Tulius Scotti ◽  
...  

2020 ◽  
Vol 8 (10) ◽  
pp. 1627
Author(s):  
Tecla Ciociola ◽  
Pier Paolo Zanello ◽  
Tiziana D’Adda ◽  
Serena Galati ◽  
Stefania Conti ◽  
...  

The growing problem of antimicrobial resistance highlights the need for alternative strategies to combat infections. From this perspective, there is a considerable interest in natural molecules obtained from different sources, which are shown to be active against microorganisms, either alone or in association with conventional drugs. In this paper, peptides with the same sequence of fragments, found in human serum, derived from physiological proteins, were evaluated for their antifungal activity. A 13-residue peptide, representing the 597–609 fragment within the albumin C-terminus, was proved to exert a fungicidal activity in vitro against pathogenic yeasts and a therapeutic effect in vivo in the experimental model of candidal infection in Galleria mellonella. Studies by confocal microscopy and transmission and scanning electron microscopy demonstrated that the peptide penetrates and accumulates in Candida albicans cells, causing gross morphological alterations in cellular structure. These findings add albumin to the group of proteins, which already includes hemoglobin and antibodies, that could give rise to cryptic antimicrobial fragments, and could suggest their role in anti-infective homeostasis. The study of bioactive fragments from serum proteins could open interesting perspectives for the development of new antimicrobial molecules derived by natural sources.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 773
Author(s):  
Ayodeji Precious Ayanwale ◽  
Brenda Lizbeth Estrada-Capetillo ◽  
Simón Yobanny Reyes-López

High doses of antimicrobial agents are a huge threat due to the increasing number of pathogenic organisms that are becoming resistant to antimicrobial agents. This resistance has led to a search for alternatives. Therefore, this study presents the synthesis and characterization of ZrO2-Ag2O nanoparticles (NPs) by sol-gel. The NPs were analyzed by dynamic light scattering (DLS), UV-visible (UV-vis), Raman and scanning electron microscopy (SEM). The NPs were later evaluated for their antifungal effects against Candidaalbicans, Candida dubliniensis, Candida glabrata, and Candida tropicalis, using disc diffusion and microdilution methods, followed by the viability study. The DLS showed sizes for ZrO2 76 nm, Ag2O 50 nm, and ZrO2-Ag2O samples between 14 and 42 nm. UV-vis shows an absorption peak at 300 nm for ZrO2 and a broadband for Ag2O NPs. Raman spectra were consistent with factor group analysis predictions. SEM showed spherically shaped NPs. The antifungal activity result suggested that ZrO2-Ag2O NPs were effective against Candida spp. From the viability study, there was no significance difference in viability as a function of time and concentration on human mononuclear cells. This promising result can contribute toward the development of alternative therapies to treat fungal diseases in humans.


Sign in / Sign up

Export Citation Format

Share Document