scholarly journals Odorants and Their Contributions to Overall Odour Emission from a Landfill Leachate

Author(s):  
Xinguang Wang ◽  
Gavin Parcsi ◽  
Eric Sivret ◽  
Minh Le ◽  
Richard Stuetz

As one of the important odour sources, landfill sites have drawn more and more public attentions. Odour emissions from landfill sites depend on the waste buried, operation activities, running conditions, etc. A study for finding out all possible odorous compounds from a landfill was conducted by analysing of on-site gas phase samples and emission samples from a landfill leachate in Sydney, Australia using thermal desorber – gas chromatography – mass spectrometer (TD-GC-MS) and air server – thermal desorber – gas chromatography – sulfur chemiluminoscence detector (AS-TD-GC-SCD). 49 odorants were identified from emission gas samples collected from landfill leachate collection pipe and only 8 odorants were detected from flux hood emission samples of the collected leachate sample. This indicates that more sampling and measurement techniques are always better to acquire all possible pollutants from an unknown odour source. The contributions of these odorants to overall odour emissions were also calculated based on their concentrations and odour thresholds. The top 10 odorants from leachate transportation pipe include methyl mercaptan, ethyl mercaptan, m-xylene, H2S, CS2, 1,2,3,4-tetra-methylbenzene, p-xylene, 1,2,4-trimethylbenzene, ethylbenzene and α-pinene. They contributed more than 95% to the odour in the gas accumulated in the leachate collection pipe.

2000 ◽  
Vol 37 (2) ◽  
pp. 371-378 ◽  
Author(s):  
Peter J Bennett ◽  
Frederick J Longstaffe ◽  
R Kerry Rowe

This study uses several approaches to examine whether calcium-containing aggregate such as dolostone is a suitable drainage material for landfill leachate-collection systems. The thermodynamic stability of carbonate drainage materials has been assessed using published leachate data from landfills in the United Kingdom and leachate sampled from four large landfill sites of variable age in southern Ontario. Electron-microbeam techniques have been used to check for dissolution in dolomitic stone exhumed from the drainage layer of the Keele Valley Landfill leachate-collection system and from experiments that simulated landfill conditions. The mineralogy of cover soils applied daily to the landfill has been compared to the drainage stone and detrital material occluding pore space in the leachate-collection system to evaluate their relative contributions to clogging. The data suggest that dissolution of dolomitic drainage stone is not significant and contributes little to the clogging of landfill leachate-collection systems. However, crystallization of secondary calcite occurs about the dolomitic stones and sizeable quantities of inorganic fines, including dolomite, were present within some samples of "clog material" exhumed from the Keele Valley collection system. Most of the dolomitic fines probably were generated during construction of the collection system; such creation of fines ought to be minimized in future landfill developments.Key words: leachate-collection system, landfills, clogging, mineralogy, leachate chemistry.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 206
Author(s):  
Anna Bokowa ◽  
Carlos Diaz ◽  
Jacek A. Koziel ◽  
Michael McGinley ◽  
Jennifer Barclay ◽  
...  

When it comes to air pollution complaints, odours are often the most significant contributor. Sources of odour emissions range from natural to anthropogenic. Mitigation of odour can be challenging, multifaceted, site-specific, and is often confounded by its complexity—defined by existing (or non-existing) environmental laws, public ordinances, and socio-economic considerations. The objective of this paper is to review and summarise odour legislation in selected European countries (France, Germany, Austria, Hungary, the UK, Spain, the Netherlands, Italy, Belgium), North America (the USA and Canada), and South America (Chile and Colombia), as well as Oceania (Australia and New Zealand) and Asia (Japan, China). Many countries have incorporated odour controls into their legislation. However, odour-related assessment criteria tend to be highly variable between countries, individual states, provinces, and even counties and towns. Legislation ranges from (1) no specific mention in environmental legislation that regulates pollutants which are known to have an odour impact to (2) extensive details about odour source testing, odour dispersion modelling, ambient odour monitoring, (3) setback distances, (4) process operations, and (5) odour control technologies and procedures. Agricultural operations are one specific source of odour emissions in rural and suburban areas and a model example of such complexities. Management of agricultural odour emissions is important because of the dense consolidation of animal feeding operations and the advance of housing development into rural areas. Overall, there is a need for continued survey, review, development, and adjustment of odour legislation that considers sustainable development, environmental stewardship, and socio-economic realities, all of which are amenable to a just, site-specific, and sector-specific application.


2021 ◽  
Author(s):  
Paap Koemets ◽  
Sander Mirme ◽  
Kuno Kooser ◽  
Heikki Junninen

<p>The Highly Oxidized Molecule Ion Spectrometer (HOMIS) is a novel instrument for measuring the total concentration of highly oxidized molecules (HOM-s) (Bianchi et al., 2019) at atmospheric pressure. The device combines a chemical ionization charger with a multi-channel differential mobility analyzer. The chemical ionization charger is based on the principles outlined by Eisele and Tanner (1993). The charger is attached to a parallel differential mobility analyzer identical to the ones used in the Neutral cluster and Air Ion Spectrometer (NAIS, Mirme 2011), but with modified sample and sheath air flow rates to improve the mobility resolution of the device. The complete mobility distribution in the range from 3.2 to 0.056 cm<sup>2</sup>/V/s is measured simultaneously by 25 electrometers. The range captures the charger ions, monomers, dimers, trimers but also extends far towards larger particles to possibly detect larger HOM-s that have not been measured with existing instrumentation. The maximum time resolution of the device is 1 second allowing it to detect rapid changes in the sample. The device has been designed to be easy to use, require little maintenance and work reliably in various environments during long term measurements.</p><p>First results of the prototype were acquired from laboratory experiments and ambient measurements. Experiments were conducted at the Laboratory of Environmental Physics, University of Tartu. The sample was drawn from a reaction chamber where alpha-pinene and ozone were introduced. Initial results show a good response when concentrations of alpha-pinene and ozone were changed. </p><p>Ambient measurements were conducted at the SMEAR Estonia measurement station in a hemiboreal forest for 10 days in the spring and two months in the winter of 2020. The HOMIS measurements were performed together with a CI-APi-TOF (Jokinen et al., 2012).</p><p> </p><p>References:</p><p>Bianchi, F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin, P., Berndt, T., Crounse, J. D., Wennberg, P. O., Mentel, T. F., Wildt, J., Junninen, H., Jokinen, T., Kulmala, M., Worsnop, D. R., Thornton, J. A., Donahue, N., Kjaergaard, H. G. and Ehn, M. (2019), “Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol”, Chemical Reviews, 119, 6, 3472–3509</p><p>Eisele, F. L., Tanner D. J. (1993), “Measurement of the gas phase concentration of H2SO4 and methane sulfonic acid and estimates of H2SO4 production and loss in the atmosphere”, JGR: Atmospheres, 98, 9001-9010</p><p>Jokinen T., Sipilä M., Junninen H., Ehn M., Lönn G., Hakala J., Petäjä T., Mauldin III R. L., Kulmala M., and Worsnop D. R. (2012), “Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF”, Atmospheric Chemistry and Physics, 12, 4117–4125</p><p>Mirme, S. (2011), “Development of nanometer aerosol measurement technology”, Doctoral thesis, University of Tartu</p>


Author(s):  
Marija Meišutovic-Akhtarieva ◽  
Eglė Marčiulaitienė

The article analyses the existing research on odour emissions from the passive odour source – municipal landfill for non-hazardous waste. The current research has been carried out in the Vilnius county, at the Kazokiškės landfill for regional municipal waste. Odour emissions were analysed using samples from waste of different age and at different outdoor air temperatures. The investigation determined the concentration of odourous volatile organic compounds (VOCs) formed in the landfill (mg/m3) and odour emissions (OUe/m2s). The odour concentration varied between 0.02 OUe/m2s (from 9 year old waste at 11oC) to 1.29 OUe/m2s (from 0–3 year old waste at minus 1 oC and minus 10 oC). It was determined that as temperature decreases (within the range of 11 to minus 10 oC), the concentration of odour emissions increases. The coefficient of correlation between the temperature of environment and the concentration of odours emitted from the landfill stood at minus 0.91.


Sign in / Sign up

Export Citation Format

Share Document