scholarly journals Electrical Heating for Heavy Oil: Past, Current, and Future Prospect

Author(s):  
Muhammad Yudatama Hasibuan ◽  
Shania Regina ◽  
Rizaldi Wahyu ◽  
Daniel Situmorang ◽  
Fadlul Azmi ◽  
...  

This paper presents a review of the electrical heating method for heavy oil recovery based on past, current, and future prospects of electrical heating. Heavy oil is one of the potential crude oil used as a link to reduce the crisis of light oil used today. The obstacle of heavy oil is a high viscosity and density in which thermal injection is a method for heavy oil recovery, but it results in economic and environmental issues. Electrical heating is one of the thermal methods by transferring heat into the reservoir. The basic process of electrical heating is to increase the mobility of the oil. Because the temperature rises, it can reduce oil viscosity and makes it easier for heavy oil to flow. The past and current developments have been carried out to fill up the gap of electrical heating projects. The future prospects must meet energy efficiency, and the excessive heat will damage formation that must be tackled in the future prospect. the works adopt several electrical heating projects and applications in the world where the works give a brief future prospect of electrical heating.

2020 ◽  
Vol 8 (2) ◽  
pp. 73-94
Author(s):  
Muhammad Khairul Afdhol ◽  
Tomi Erfando ◽  
Fiki Hidayat ◽  
Muhammad Yudatama Hasibuan ◽  
Shania Regina

This paper presents a review of electrical heating for the recovery of heavy oil which the work adopts methods used in the past and the prospects for crude oil recovery in the future. Heavy oil is one of the crude oils with API more than 22 which has the potential to overcome the current light oil crisis. However, high viscosity and density are challenges in heavy oil recovery. The method is often used to overcome these challenges by using thermal injection methods, but this method results in economic and environmental issues. The electrical heating method could be a solution to replace conventional thermal methods in which the methodology of electrical heating is to transfer heat into the reservoir due to increasing oil mobility. Because the temperature rises, it could help to reduce oil viscosity, then heavy oil will flow easily. The applications of electrical heating have been adopted in this paper where the prospects of electrical heating are carried out to be useful as guidelines of electrical heating. The challenge of electrical heating is the excessive heat will damage the formation that must be addressed in the prospect of electrical heating which must meet energy efficiency. The use of Artificial intelligence becomes a new technology to overcome problems that are often found in conventional thermal methods where this method could avoid steam breakthrough and excessive heat. Therefore, it becomes more efficient and could reduce costs.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Ali Alarbah ◽  
Ezeddin Shirif ◽  
Na Jia ◽  
Hamdi Bumraiwha

Abstract Chemical-assisted enhanced oil recovery (EOR) has recently received a great deal of attention as a means of improving the efficiency of oil recovery processes. Producing heavy oil is technically difficult due to its high viscosity and high asphaltene content; therefore, novel recovery techniques are frequently tested and developed. This study contributes to general progress in this area by synthesizing an acidic Ni-Mo-based liquid catalyst (LC) and employing it to improve heavy oil recovery from sand-pack columns for the first time. To understand the mechanisms responsible for improved recovery, the effect of the LC on oil viscosity, density, interfacial tension (IFT), and saturates, aromatics, resin, and asphaltenes (SARA) were assessed. The results show that heavy oil treated with an acidic Ni-Mo-based LC has reduced viscosity and density and that the IFT of oil–water decreased by 7.69 mN/m, from 24.80 mN/m to 17.11 mN/m. These results are specific to the LC employed. The results also indicate that the presence of the LC partially upgrades the structure and group composition of the heavy oil, and sand-pack flooding results show that the LC increased the heavy oil recovery factor by 60.50% of the original oil in place (OOIP). Together, these findings demonstrate that acidic Ni-Mo-based LCs are an effective form of chemical-enhanced EOR and should be considered for wider testing and/or commercial use.


2012 ◽  
Author(s):  
Evgenii N. Taraskin ◽  
Stanislav Ursegov ◽  
Vladimir Muliak ◽  
Mikhail Vasilievich Chertenkov ◽  
Andrey Alabushin

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5735
Author(s):  
Ali Telmadarreie ◽  
Japan J Trivedi

Enhanced oil recovery (EOR) from heavy oil reservoirs is challenging. High oil viscosity, high mobility ratio, inadequate sweep, and reservoir heterogeneity adds more challenges and severe difficulties during any EOR method. Foam injection showed potential as an EOR method for challenging and heterogeneous reservoirs containing light oil. However, the foams and especially polymer enhanced foams (PEF) for heavy oil recovery have been less studied. This study aims to evaluate the performance of CO2 foam and CO2 PEF for heavy oil recovery and CO2 storage by analyzing flow through porous media pressure profile, oil recovery, and CO2 gas production. Foam bulk stability tests showed higher stability of PEF compared to that of surfactant-based foam both in the absence and presence of heavy crude oil. The addition of polymer to surfactant-based foam significantly improved its dynamic stability during foam flow experiments. CO2 PEF propagated faster with higher apparent viscosity and resulted in more oil recovery compared to that of CO2 foam injection. The visual observation of glass column demonstrated stable frontal displacement and higher sweep efficiency of PEF compared to that of conventional foam. In the fractured rock sample, additional heavy oil recovery was obtained by liquid diversion into the matrix area rather than gas diversion. Aside from oil production, the higher stability of PEF resulted in more gas storage compared to conventional foam. This study shows that CO2 PEF could significantly improve heavy oil recovery and CO2 storage.


2006 ◽  
Vol 9 (02) ◽  
pp. 154-164 ◽  
Author(s):  
Mingzhe Dong ◽  
S.-S. Sam Huang ◽  
Keith Hutchence

Summary The methane pressure-cycling (MPC) process is an enhanced-oil-recovery (EOR) scheme intended for application in some heavy-oil reservoirs after termination of either primary or waterflood production. The essence of the process is the restoration of the solution-gas-drive mechanism. The restoration is accomplished by reinjecting an appropriate amount of solution gas (mainly methane) and then repressuring the gas back into solution by injecting water until approximate original reservoir pressure is reached. This, aside from the replacement of produced oil by water, recreates the primary-production conditions. This novel recovery technique is being developed to target the considerable portion of heavy-oil resources located in thin reservoirs. Primary and secondary methods have managed to recover at best 10% of the initial oil in place (IOIP). Heat losses to overburden and underburden or bottomwater zones make thermal methods unsuitable for thin reservoirs. Sandpack-flood tests in 30.5-cm (length) × 5.0-cm (diameter) sandpacks were carried out for oils with a range of dead-oil viscosities from 1700 to 5400 mPa.s. The results showed that the pressure-cycling process could create a favorable condition for recharged gas to contact the remaining oil in reservoirs. This restores the situation whereby substantial amounts of gas are in solution for further "primary" production. The effects on the efficiency of the MPC process of cycle termination strategy, oil viscosity, and mobile-water saturation were investigated. Simulations were conducted to investigate the MPC process in three heavy-oil reservoirs in Saskatchewan, Canada. The effects on the process of infill wells, oil viscosity, gas-injection rate, and the presence of wormholes in reservoirs were studied. Introduction Heavy oil in thick-pay reservoirs (i.e., >10 m) is commonly produced with thermal-recovery methods. These methods (steam injection and its variants) are generally not suitable for thin reservoirs because of heat losses to overburden and underburden or bottomwater zones (Fairfield and White 1982; Dyer et al. 1994). The world's large untapped oil resource remaining after recovery by conventional technology offers potential for exploitation by a suitably developed tertiary-recovery technique. For example, Saskatchewan accounts for 62% of Canada's total heavy-oil resources (Bowers and Drummond 1997), including 1.7 billion m3 of proved reserves and 3.7 billion m3 of probable reserves (Saskatchewan Energy and Mines 1998). Of the province's proven initial heavy oil in place, 97% is contained in reservoirs where the pay zone is less than 10 m, and 55% in reservoirs with a pay zone less than 5 m thick (Huang et al. 1987; Srivastava et al. 1993). Primary and secondary methods combined recover, on average, only about 7% of the proven IOIP (Saskatchewan Energy and Mines 1998). The incentive is strong for the development of appropriate EOR techniques that will maximize the recovery potential of and profitability from these thin heavy-oil reservoirs. Extensive literature is available on CO2, flue gas, and produced-gas injection for heavy-oil recovery, including slug displacement, water alternating gas (WAG), and cyclic (huff ‘n’ puff) processes (Huang et al. 1987; Srivastava et al. 1993, 1994, 1999; Srivastava and Huang 1997; Ma and Youngren 1994; Issever et al. 1993; Olenick et al. 1992). A comparative study of the oil-recovery behavior for a 14.1°API heavy oil with different injection gases (CO2, flue gas, and produced gas) showed that CO2 was the best-suited gas for EOR of heavy oils (Srivastava et al. 1999). Cyclic CO2 injection for heavy-oil recovery was tested in the field, and field case histories indicated that oil production was enhanced (Olenick et al. 1992). However, natural CO2 sources are not available to most oil reservoirs. The cost of CO2 capture from flue gas and other sources may range from U.S. $25 to $70/ton (Padamsey and Railton 1993). Produced gas is available in large quantities at a much lower cost. With this consideration, produced gas can be an economically effective agent for heavy-oil recovery by the cyclic-injection process.


2010 ◽  
Vol 13 (01) ◽  
pp. 131-142 ◽  
Author(s):  
Berna Hascakir ◽  
Tayfun Babadagli ◽  
Serhat Akin

SPE Journal ◽  
2016 ◽  
Vol 21 (01) ◽  
pp. 74-86 ◽  
Author(s):  
M.. Tagavifar ◽  
R.. Fortenberry ◽  
E.. de Rouffignac ◽  
K.. Sepehrnoori ◽  
G. A. Pope

Summary A hybrid process is developed and optimized for heavy-oil recovery that combines moderate reservoir heating and chemical enhanced oil recovery in the form of alkali/cosolvent/polymer flood. The process is simulated by use of a model derived from existing laboratory and pilot data of a 5,000-cp heavy-oil field. It is found that hot waterflooding is efficient in heating the reservoir only when high early injectivity is achievable. This may not be the case if incipient fluid injectivity is low and/or long, continuous, horizontal shale baffles are present. To remedy the former, an electrical-preheating period is devised, whereas switching to a horizontal flood could overcome the latter. Once the reservoir temperature is raised sufficiently, a moderately unstable alkali/cosolvent/polymer flood is capable of mobilizing and displacing oil. A best combined strategy for efficient reservoir heating, high oil recovery, and cost effectiveness is found to involve reducing the oil viscosity to values of approximately 300–500 cp and combining a degree of mobility control and low interfacial tension as recovery mechanisms.


2019 ◽  
pp. 51 ◽  
Author(s):  
P. Pourafshary ◽  
H. Al Farsi

The primary heavy oil recovery is low due to the high viscosity and low mobility; hence, conventional thermal enhanced oil recovery methods such as steam flooding are widely applied to increase the oil production. New unconventional method such as microwave assisted gravity drainage (MWAGD) is under study the change the viscosity of the oil by microwave radiation. Different challenges such as heat loss and low efficiency are faced in unconventional thermal recovery methods especially in deep reservoirs. To improve the performance of unconventional methods, nanotechnology can play an important role. Nanomaterials due to their high surface to volume ratio, more heat absorbance, and more conductivity can be used in a novel approach called nanomaterial/microwave thermal oil recovery. In this work, several nanofluids prepared from nanoparticles such as γ-Alumina (γ-Al2O3), Titanium (IV) oxide (TiO2), MgO, and Fe3O4 were used to enhance the oil viscosity reduction in the porous media under MWAGD mechanism. Our tests showed that adding nanoparticles can increase the absorption of microwave radiation in the oil/ water system in the porous media. The magnitude of this increase is related to the type, particle size distribution in base fluid and, concentration of nanoparticles. Aluminum oxide nanoparticle was found to have the greatest effect on thermal properties of water. For example, only 0.05 wt.% of this nanoparticle, improves the alteration in temperature of water for around 100%. This change can affect the oil recovery and changed it from 37% to more than 40% under MWAGD. Hence, our experiments showed that besides other applications of nanotechnology in enhance oil recovery, heavy oil recovery can also be affected by nanomaterials.


Sign in / Sign up

Export Citation Format

Share Document