scholarly journals Enhancement of Heavy Oil Recovery by Nanoparticle/Microwave Application

2019 ◽  
pp. 51 ◽  
Author(s):  
P. Pourafshary ◽  
H. Al Farsi

The primary heavy oil recovery is low due to the high viscosity and low mobility; hence, conventional thermal enhanced oil recovery methods such as steam flooding are widely applied to increase the oil production. New unconventional method such as microwave assisted gravity drainage (MWAGD) is under study the change the viscosity of the oil by microwave radiation. Different challenges such as heat loss and low efficiency are faced in unconventional thermal recovery methods especially in deep reservoirs. To improve the performance of unconventional methods, nanotechnology can play an important role. Nanomaterials due to their high surface to volume ratio, more heat absorbance, and more conductivity can be used in a novel approach called nanomaterial/microwave thermal oil recovery. In this work, several nanofluids prepared from nanoparticles such as γ-Alumina (γ-Al2O3), Titanium (IV) oxide (TiO2), MgO, and Fe3O4 were used to enhance the oil viscosity reduction in the porous media under MWAGD mechanism. Our tests showed that adding nanoparticles can increase the absorption of microwave radiation in the oil/ water system in the porous media. The magnitude of this increase is related to the type, particle size distribution in base fluid and, concentration of nanoparticles. Aluminum oxide nanoparticle was found to have the greatest effect on thermal properties of water. For example, only 0.05 wt.% of this nanoparticle, improves the alteration in temperature of water for around 100%. This change can affect the oil recovery and changed it from 37% to more than 40% under MWAGD. Hence, our experiments showed that besides other applications of nanotechnology in enhance oil recovery, heavy oil recovery can also be affected by nanomaterials.

2021 ◽  
Author(s):  
Ali Telmadarreie ◽  
Christopher Johnsen ◽  
Steven L. Bryant

Abstract This study designs a novel complex fluid (foam/emulsion) using as main components gas, low-toxicity solvents (green solvents) which may promote oil mobilization, and synergistic foam stabilizers (i.e. nanoparticles and surfactants) to improve sweep efficiency. This nanoparticle-enabled green solvent foam (NGS-foam) avoids major greenhouse gas emissions from the thermal recovery process and improves the performance of conventional green solvent-based methods (non-thermal) by increasing the sweep efficiency, utilizing less solvent while producing more oil. Surfactants and nanoparticles were screened in static tests to generate foam in the presence of a water-soluble/oil-soluble solvent and heavy crude oil from a Canadian oil field (1600 cp). The liquid phase of NGS-foam contains surfactant, nanoparticle, and green solvent (GS) all dispersed in the water phase. Nitrogen was used as the gas phase. Fluid flow experiments in porous media with heterogeneous permeability structure mimicking natural environments were performed to demonstrate the dynamic stability of the NGS-foam for heavy oil recovery. The propagation of the pre-generated foam was monitored at 10 cm intervals over the length of porous media (40 cm). Apparent viscosity, pressure gradient, inline measurement of effluent density, and oil recovery were recorded/calculated to evaluate the NGS-foam performance. The outcomes of static experiments revealed that surfactant alone cannot stabilize the green solvent foam and the presence of carefully chosen nanoparticles is crucial to have stable foam in the presence of heavy oil. The results of NGS-foam flow in heterogeneous porous media demonstrated a step-change improvement in oil production such that more than 60% of residual heavy oil was recovered after initial waterflood. This value of residual oil recovery was significantly higher than other scenarios tested in this study (i.e. GS- water and gas co-injection, conventional foam without GS, GS-foam stabilized with surfactant only and GS-waterflood). The increased production occurred because NGS-foam remained stable in the flowing condition, improves the sweep efficiency and increases the contact area of the solvent with oil. The latter factor is significant: comparing to GS-waterflood, NGS-foam produces a unit volume of oil faster with less solvent and up to 80% less water. Consequently, the cost of solvent per barrel of incremental oil will be lower than for previously described solvent applications. In addition, due to its water solubility, the solvent can be readily recovered from the reservoir by post flush of water and thus re-used. The NGS-foam has several potential applications: recovery from post-CHOPS reservoirs (controlling mobility in wormholes and improving the sweep efficiency while reducing oil viscosity), fracturing fluid (high apparent viscosity to carry proppant and solvent to promote hydrocarbon recovery from matrix while minimizing water invasion), and thermal oil recovery (hot NGS-foam for efficient oil viscosity reduction and sweep efficiency improvement).


2021 ◽  
Vol 888 ◽  
pp. 111-117
Author(s):  
Yi Zhao ◽  
De Yin Zhao ◽  
Rong Qiang Zhong ◽  
Li Rong Yao ◽  
Ke Ke Li

With the continuous exploitation of most reservoirs in China, the proportion of heavy oil reservoirs increases, and the development difficulty is greater than that of conventional reservoirs. In view of the important subject of how to improve the recovery factor of heavy oil reservoir, the thermal recovery technology (hot water flooding, steam flooding, steam assisted gravity drainage SAGD and steam huff and puff) and cold recovery technology (chemical flooding, electromagnetic wave physical flooding and microbial flooding) used in the development of heavy oil reservoir are summarized. The principle of action is analyzed, and the main problems restricting heavy oil recovery are analyzed The main technologies of heavy oil recovery are introduced from the aspects of cold recovery and hot recovery. Based on the study of a large number of literatures, and according to the development trend of heavy oil development, suggestions and prospects for the future development direction are put forward.


1999 ◽  
Vol 2 (03) ◽  
pp. 238-247 ◽  
Author(s):  
Raj K. Srivastava ◽  
Sam S. Huang ◽  
Mingzhe Dong

Summary A large number of heavy oil reservoirs in Canada and in other parts of the world are thin and marginal and thus unsuited for thermal recovery methods. Immiscible gas displacement appears to be a very promising enhanced oil recovery technique for these reservoirs. This paper discusses results of a laboratory investigation, including pressure/volume/temperature (PVT) studies and coreflood experiments, for assessing the suitability and effectiveness of three injection gases for heavy-oil recovery. The gases investigated were a flue gas (containing 15 mol % CO2 in N2), a produced gas (containing 15 mol?% CO2 in CH4), and pure CO2 . The test heavy-oil (14° API gravity) was collected from Senlac reservoir located in the Lloydminster area, Saskatchewan, Canada. PVT studies indicated that the important mechanism for Senlac oil recovery by gas injection was mainly oil viscosity reduction. Pure CO2 appeared to be the best recovery agent, followed by the produced gas. The coreflood results confirmed these findings. Nevertheless, produced gas and flue gas could be sufficiently effective flooding agents. Comparable oil recoveries in flue gas or produced gas runs were believed to be a combined result of two competing mechanisms—a free-gas mechanism provided by N2 or CH4 and a solubilization mechanism provided by CO2. This latter predominates in CO2 floods. Introduction A sizable number of heavy-oil reservoirs in Canada1 and in other parts of the world are thin and shaly. Some of these reservoirs are also characterized by low-oil saturation, heterogeneity, low permeability, and bottom water.2,3 For example, about 55% of 1.7 billion m3 of proven heavy-oil resource in the Lloydminster and Kindersley region in Saskatchewan, Canada, is contained in less than 5 m (15 ft.) pay zone and nearly 97% is in less than 10 m (30 ft.) pay zone.4,5 Primary and secondary methods combined recover only about 7% of the proven initial oil in place (IOIP).1 Such reservoirs are not amenable to thermal recovery methods: heat is lost excessively to surroundings and steam is scavenged by bottomwater zones.6,7 The immiscible gas displacement appears to be a very promising enhanced oil recovery (EOR) process for these thin reservoirs. The immiscible gas EOR process has the potential to access more than 90% of the total IOIP.1,7 It could, according to previous studies,6–12 recover up to an additional 30% IOIP incremental over that recovered by initial waterflood for some moderately viscous oils. For the development of a viable immiscible gas process applicable to moderately viscous heavy oils found in this sort of reservoirs, we selected three injection gases for study: CO2 reservoir-produced gas (RPG), and flue gas (FG) from power plant exhausts. Extensive literature is available on CO2 flooding for heavy-oil recovery, dealing with pressure/volume/temperature (PVT) behavior,3,6,7,13-15 oil recovery characteristics from linear and scaled models,3,6-8,10-12,15,16 numerical simulation, and field performance.17–19 However, only limited data are available on flue gas and produced gas flooding.20–22 To determine the most suitable gas for EOR application from laboratory investigations, we need knowledge of the physical and chemical interaction between gas, reservoir oil, and formation rock; and information on the recovery potential for various injection gases for a targeted oil. The test oil selected for this study was from the Senlac reservoir (14° API) located in northwest Saskatchewan (Lloydminster area). The PVT properties for the oil/injection gas mixtures were measured and compared. A comparative study of the oil recovery behavior for Senlac dead oil and Senlac reservoir fluid was carried out with different injection gases to assess their relative effectiveness for EOR. Senlac Reservoir Geology The Senlac oil pool is located within the lower Cretaceous sand/shale sequence of the Mannville Group. The Mannville thickens northward and lies unconformably on the Upper Devonian Carbonates of the Saskatchewan Group. The trapping mechanism for the oil is mainly stratigraphic. The lower Lloydminster oil reservoir is a wavy, laminated, very fine- to fine-grained, well sorted, and generally unconsolidated sandstone. It exhibits uniform dark oil staining throughout, interrupted by a number of shale beds of 2 to 9 m (6 to 27 ft) thick, which are distributed over the entire reservoir. The reservoir is overlain by a shale/siltstone/sandstone sequence and lies on a 3 m (9 ft) thick coal seam. The detailed reservoir (Senlac) data and operating characteristics are provided in Ref. 5. The reservoir temperature is 28°C (82.4°F) and the reservoir pressure varies between 2.5 and 4.1 MPa (363 and 595 psia). The virgin pressure of the reservoir at discovery was 5.4 MPa (783 psia) and the gas/oil ratio (GOR) was 16.2 sm3/m3 (89.8 sft3 /bbl). The reservoir matrix has a porosity of about 27.7% by volume and permeability of about 2.5 mD. The average water saturation is about 32% pore volume (PV). The pattern configuration for oil production is five-spot on a 16.2 ha (40 acre) drainage area. The estimated primary and secondary (solution gas and waterflood) recovery is 5.5% of the initial oil in place. Experiment Wellhead Dead Oil and Brine. Senlac wellhead dead oil and formation brine (from Well 16-35-38-27 W3M) were supplied by Wascana Energy, Inc. The oil was cleaned for the experiments by removal of basic sediment and water (BS&W) through high-speed centrifugation. The chemical and physical properties of cleaned Senlac stock tank oil are shown in Table 1. The formation brine was vacuum filtered twice to remove iron contamination from the sample barrels.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1693-1698
Author(s):  
Yi Ding ◽  
Guo Wei Qin ◽  
Peng Liu ◽  
Zi Li Fan ◽  
Hong Wei Xiao ◽  
...  

Heat self-generated CO2 technique is proposed, which is focused on the problems of recovery difficulty, poor effect steam soaking and so on for heavy oil reservoirs. This technology is combining of steam flooding and gas flooding and so on. Its main mechanism is the application of steam heating blowing agent to generate a large volume of gases (including CO2, NH3, etc) in the formation. While some of these gases acting with the oil to reduce the oil viscosity, some form miscible flooding to reduce water interfacial tension, so as to achieve the purpose of enhancing oil recovery. An optimized selection of the heat blowing agents was performed. By comparison the difference before and after the reaction of blowing agent solution, the increase of alkaline is occurred after the reaction, and is helpful to reduce oil viscosity and lower interfacial tension, etc. Studies indicate that heat-generating CO2 flooding technology can get a maximum viscosity reduction rate of 76.7%, oil-water interfacial tension decreased by 54.77%, further improve oil recovery by 4.17% based on the steam drive, which shows a technical advantage toward conventional EOR method. The field experiments indicate that the technique can greatly improve the oil production, which will provide a powerful technical supporting for the efficient development of heavy oil.


2011 ◽  
Vol 29 (6) ◽  
pp. 797-815 ◽  
Author(s):  
Benyu Su ◽  
Yasuhiro Fujimitsu

With an increasing tendency towards more demand for energy resources, the supply of energy as a focus of global strategy is attracting more and more attention from the world. However, on the one hand, conventional hydrocarbon resources are decreasing gradually, and therefore it is definitely an urgent task to search for renewable and replaceable resources at the present time. On the other hand, it has been proved that the total reserves of heavy oil are already up to 1105×108 tons around the world, which means that exploring heavy oil can be a beneficial supplement for alleviating the shortage of oil and gas. Moreover, it is noteworthy that because the heavy oil can be exploited by heated CO2, collecting and consuming CO2 during the production process will help to relieve global warming. In this study, we take the feasibility of heavy oil recovery by CO2 steam into consideration only from the viewpoint of geophysics. In the process of research, with the help of borehole-surface electric potential and cross-borehole electric potential, the entire procedures from heating heavy oil reservoir and optimizing the location of well to deciding the layer of perforation are exhibited completely. In the course of calculation, potential distributions corresponding to a point source of current are acquired by solving the Poisson equation using a direct and explicit finite difference technique for a lower half-space with 3-D distribution of conductivity. As for computation of a large sparse matrix, the technique of nonzero bandwidth storage and the Incomplete Cholesky Conjugate Gradient method are adopted. The consequences prove that with the assistance of cross-borehole electric potential combining with borehole-surface electric potential, the project of heavy oil recovery by CO2 steam is feasible and effective.


Author(s):  
Boni Swadesi ◽  
Suranto Ahmad Muraji ◽  
Aditya Kurniawan ◽  
Indah Widiyaningsih ◽  
Ratna Widyaningsih ◽  
...  

AbstractThermal injection methods are usually used for high viscosity oil. The results of previous studies showed that the combination of SF and SFF had the highest increase in oil recovery but still requires further study to determine the optimum strategy. This work is purposed to optimize the development scenario of a combined CSS-SF applied to a heavy oil field located in Sumatera, Indonesia. The recovery factor and NPV become the objective function, and several given and controlled parameters sensitivity toward the objective function are studied. A proxy model based on quadratic multivariate regression is developed to evaluate and get the desired objective function. The reservoir simulation of the thermal recovery process is done using CMG-STARS simulator. The overall workflow of scenario optimization is conducted using CMOST™ module. Optimum development scenario is obtained through maximization of the objective function. This work shows that the combination of proxy model development and optimization results in the best scenario of combined CSS-SF for heavy oil recovery.


2021 ◽  
Author(s):  
Randy Agra Pratama ◽  
Tayfun Babadagli

Abstract Our previous research, honoring interfacial properties, revealed that the wettability state is predominantly caused by phase change—transforming liquid phase to steam phase—with the potential to affect the recovery performance of heavy-oil. Mainly, the system was able to maintain its water-wetness in the liquid (hot-water) phase but attained a completely and irrevocably oil-wet state after the steam injection process. Although a more favorable water-wetness was presented at the hot-water condition, the heavy-oil recovery process was challenging due to the mobility contrast between heavy-oil and water. Correspondingly, we substantiated that the use of thermally stable chemicals, including alkalis, ionic liquids, solvents, and nanofluids, could propitiously restore the irreversible wettability. Phase distribution/residual oil behavior in porous media through micromodel study is essential to validate the effect of wettability on heavy-oil recovery. Two types of heavy-oils (450 cP and 111,600 cP at 25oC) were used in glass bead micromodels at steam temperatures up to 200oC. Initially, the glass bead micromodels were saturated with synthesized formation water and then displaced by heavy-oils. This process was done to exemplify the original fluid saturation in the reservoirs. In investigating the phase change effect on residual oil saturation in porous media, hot-water was injected continuously into the micromodel (3 pore volumes injected or PVI). The process was then followed by steam injection generated by escalating the temperature to steam temperature and maintaining a pressure lower than saturation pressure. Subsequently, the previously selected chemical additives were injected into the micromodel as a tertiary recovery application to further evaluate their performance in improving the wettability, residual oil, and heavy-oil recovery at both hot-water and steam conditions. We observed that phase change—in addition to the capillary forces—was substantial in affecting both the phase distribution/residual oil in the porous media and wettability state. A more oil-wet state was evidenced in the steam case rather than in the liquid (hot-water) case. Despite the conditions, auspicious wettability alteration was achievable with thermally stable surfactants, nanofluids, water-soluble solvent (DME), and switchable-hydrophilicity tertiary amines (SHTA)—improving the capillary number. The residual oil in the porous media yielded after injections could be favorably improved post-chemicals injection; for example, in the case of DME. This favorable improvement was also confirmed by the contact angle and surface tension measurements in the heavy-oil/quartz/steam system. Additionally, more than 80% of the remaining oil was recovered after adding this chemical to steam. Analyses of wettability alteration and phase distribution/residual oil in the porous media through micromodel visualization on thermal applications present valuable perspectives in the phase entrapment mechanism and the performance of heavy-oil recovery. This research also provides evidence and validations for tertiary recovery beneficial to mature fields under steam applications.


2014 ◽  
Author(s):  
Sun Jianfang ◽  
Wu Guanghuang ◽  
Liu Chuanxi ◽  
Li Wei

2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Zhanxi Pang ◽  
Peng Qi ◽  
Fengyi Zhang ◽  
Taotao Ge ◽  
Huiqing Liu

Heavy oil is an important hydrocarbon resource that plays a great role in petroleum supply for the world. Co-injection of steam and flue gas can be used to develop deep heavy oil reservoirs. In this paper, a series of gas dissolution experiments were implemented to analyze the properties variation of heavy oil. Then, sand-pack flooding experiments were carried out to optimize injection temperature and injection volume of this mixture. Finally, three-dimensional (3D) flooding experiments were completed to analyze the sweep efficiency and the oil recovery factor of flue gas + steam flooding. The role in enhanced oil recovery (EOR) mechanisms was summarized according to the experimental results. The results show that the dissolution of flue gas in heavy oil can largely reduce oil viscosity and its displacement efficiency is obviously higher than conventional steam injection. Flue gas gradually gathers at the top to displace remaining oil and to decrease heat loss of the reservoir top. The ultimate recovery is 49.49% that is 7.95% higher than steam flooding.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Ali Alarbah ◽  
Ezeddin Shirif ◽  
Na Jia ◽  
Hamdi Bumraiwha

Abstract Chemical-assisted enhanced oil recovery (EOR) has recently received a great deal of attention as a means of improving the efficiency of oil recovery processes. Producing heavy oil is technically difficult due to its high viscosity and high asphaltene content; therefore, novel recovery techniques are frequently tested and developed. This study contributes to general progress in this area by synthesizing an acidic Ni-Mo-based liquid catalyst (LC) and employing it to improve heavy oil recovery from sand-pack columns for the first time. To understand the mechanisms responsible for improved recovery, the effect of the LC on oil viscosity, density, interfacial tension (IFT), and saturates, aromatics, resin, and asphaltenes (SARA) were assessed. The results show that heavy oil treated with an acidic Ni-Mo-based LC has reduced viscosity and density and that the IFT of oil–water decreased by 7.69 mN/m, from 24.80 mN/m to 17.11 mN/m. These results are specific to the LC employed. The results also indicate that the presence of the LC partially upgrades the structure and group composition of the heavy oil, and sand-pack flooding results show that the LC increased the heavy oil recovery factor by 60.50% of the original oil in place (OOIP). Together, these findings demonstrate that acidic Ni-Mo-based LCs are an effective form of chemical-enhanced EOR and should be considered for wider testing and/or commercial use.


Sign in / Sign up

Export Citation Format

Share Document