scholarly journals Liquid-Liquid Equilibrium Behavior and In Vitro Digestion Simulation of Medium Chain Fatty Acids

Author(s):  
Ericsem Pereira ◽  
Antonio J. A. Meirelles ◽  
Guilherme J. Maximo

The absorption of medium-chain fatty acids (MCFA) depends on the solubility of these components in the gastric fluid. Parameters such as the total MCFA concentration, carboxyl ionization level, and carbon chain length affect the solubility of these molecules. Moreover, the enzymatic lipolysis of solubilized triacylglycerol (TAG) molecules may depend on the carbon chain length of the fatty acids (FAs) components and their positions on the glycerol backbone. This present study aimed at investigating the effect of electrolyte usually formed during the gastric digestion phase on the solubility of MCFA, and evaluating the influence of the FA carbon chain length on the lipolysis rate during the in vitro digestion simulation. The results obtained here showed that the increasing of electrolyte concentrations tend to decrease the mutual solubility of systems composed by the caproic and caprylic fatty acids + sodium chloride, sodium bicarbonate, and potassium chloride solutions. We also observed that a conventional version of the thermodynamic UNIQUAC model was able to correlate the liquid-liquid phase behavior of the electrolyte solutions. Regarding the in vitro digestion simulation, the experimental data indicated that the action of the pancreatic enzyme occurred preferentially in TAG molecules comprised of short and medium-chain fatty acids.

2019 ◽  
Vol 64 (No. 8) ◽  
pp. 325-331
Author(s):  
Klára Laloučková ◽  
Lucie Malá ◽  
Paula Slaničková ◽  
Eva Skřivanová

Various pathogens causing mastitis in dairy cattle are of serious concern due to their increasing antibacterial resistance and potential transmission to other cows, calves, and the environment, especially through the milking process. Therefore, alternative approaches to antimicrobial usage in the treatment or control of mastitis in dairy cattle are severely needed. The antibacterial effect of medium-chain fatty acids (MCFAs) is known to be significant for various pathogens, but there is only limited information about the activity of MCFAs on mastitis-causing pathogens. Moreover, no evidence about the antimicrobial effects of palm oils rich in MCFAs, such as coconut, palm kernel, and tucuma oil, can be found in the current literature. The aim of this study was to evaluate the in vitro antibacterial effect of palm oils rich in MCFAs, after cleavage by an exogenous lipase from Mucor javanicus, on bovine mastitis-causing strains (Staphylococcus aureus, Streptococcus agalactiae, Streptococcus dysgalactiae, and Streptococcus uberis) by the broth microdilution method. All tested palm oils exerted antibacterial activity against eight tested bacterial strains in the range of 64–8192 µl/ml with Str. agalactiae being the most sensitive and S. aureus being the most resistant species. The results of the present study demonstrate that palm oils rich in MCFAs can serve as an alternative to the predominantly used predip and postdip procedures in bovine mastitis control, but further in vivo studies are needed to confirm the findings for their possible applications.


2020 ◽  
Author(s):  
Ha Thi Thanh Tran ◽  
Anh Duc Truong ◽  
Duc Viet Ly ◽  
Tuan Van Hoang ◽  
Chinh Thi Nguyen ◽  
...  

Abstract Background African swine fever (ASF) is an important disease affecting swine and has a significant economic loss on both the developed and developing world but due to the lack of vaccines, drug, and effective control measures, ASF virus remains a serious threat to global pork production. The activities of medium-chain fatty acids (MCFAs) against viral pathogens have been reported previously. However, the effects of this family on ASFV have been not yet investigated. In this study, we evaluated the potential effects of MCFAs in individual and synergistic forms, to prevent and/or reduce ASFV infection using in vitro feed and water models. Results The potential effects of MCFAs, including C8, C6-C8-C10 (1:1:1 ratio) and C8-C10-C12 (1:1:1 ratio) against a field ASFV strain isolated in Red River Delta region of Vietnam were further examined by real-time PCR in in vitro feed and water models. All tested products have shown a strong antiviral effect against ASFV infectivity at doses of 0.375% and 0.5% in both feed and water assays. Interestingly, the synergistic MCFAs have shown clearly their potential activities against ASFV in which at lower dose of 0.25%, pre-treatment with product 2 and 3 induced significant increases at the level of Cq value when compared to positive control and/or product 1 (P < 0.05). Conclusions To our knowledge, it is the first report on in vitro examination of the anti-ASFV activities of the MCFAs. Our findings suggested that all tested products, both individual and synergistic forms of MCFAs, have possessed a strong anti-ASFV effect and this effect is dose- dependence in in vitro feed and water models. Additionally, synergistic effects of MCFAs are more effective against ASFV when compared to individual form. The further studies focusing on in vivo anti-ASFV effects of MCFAs are very important to bring new insight into the mode of ASFV-reduced action by these compounds in swine feed and water consumption.


1995 ◽  
Vol 311 (2) ◽  
pp. 689-697 ◽  
Author(s):  
S J Hardy ◽  
B S Robinson ◽  
A Ferrante ◽  
C S T Hii ◽  
D W Johnson ◽  
...  

Fatty acids with more than 22 carbon atoms (very-long-chain fatty acids; VLCFAs) are normal cellular components that have been implicated in the pathophysiology of a number of peroxisomal disorders. To date, however, essentially nothing is known regarding their biological activities. Ca2+ mobilization is an important intracellular signalling system for a variety of agonists and cell types. Given that several polyunsaturated long-chain fatty acids mobilize intracellular Ca2+ and that we have postulated that the VLCFAs may be involved in signal transduction, we examined whether the tetraenoic VLCFA induced Ca2+ mobilization in human neutrophils. We report that fatty acid-induced intracellular Ca2+ mobilization declined for fatty acid species of more than 20 carbon atoms, but increased again as the carbon chain length approached 30. This Ca2+ mobilization occurred independently of inositol 1,4,5-triphosphate production and protein kinase C translocation and involved both the release of Ca2+ from the intracellular stores and changes to the influx or efflux of the ion. We further observed that triacontatetraenoic acid [30:4(n-6)] mobilized Ca2+ from a thapsigargin-insensitive intracellular pool distinct from the thapsigargin-sensitive pools affected by arachidonic acid [20:4(n - 6)] or N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP). 20:4 (n - 6) induced strong superoxide production (chemiluminescence) which was inhibited by thapsigargin pretreatment. In contrast, fatty acid-induced superoxide production progressively declined as the carbon chain length increased beyond 20-22 carbon atoms. Further studies suggested that the thapsigargin-insensitive Ca2+ mobilization elicited by 30:4 (n - 6) was not related to oxyradical formation, while the thapsigargin-sensitive Ca2+ mobilization induced by 20:4 (n - 6) may be involved in the initiation but not necessarily the maintenance of superoxide production. In conclusion, this is the first report to demonstrate a biological activity for the VLCFA and indicates that 30:4 (n - 6) influences second messenger systems in intact cells that differ from those affected by long-chain fatty acids such as 20:4 (n - 6).


Sign in / Sign up

Export Citation Format

Share Document