scholarly journals COVID-19 and Crosstalk With the Hallmarks of Aging

Author(s):  
Shabnam Salimi ◽  
John M. Hamlyn

Within the past several decades, the emergence of new viral diseases with severe health complications and mortality is evidence of an age-dependent, compromised bodily response to abrupt stress with concomitantly reduced immunity. The new severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, causes coronavirus disease 2019 (COVID-19). It has increased morbidity and mortality in persons with underlying chronic diseases and those with a compromised immune system regardless of age and in older adults who are more likely to have these conditions. While SARS-CoV-2 is highly virulent, there is variability in the severity of the disease and its complications in humans. Severe pneumonia, acute respiratory distress syndrome, lung fibrosis, cardiovascular events, acute kidney injury, stroke, hospitalization, and mortality have been reported that result from pathogen–host interactions. Hallmarks of aging, interacting with one another, have been proposed to influence health span in older adults, possibly via mechanisms regulating the immune system. Here, we review the potential roles of the hallmarks of aging coupled with host–coronavirus interactions. Of these hallmarks, we focused on those that directly or indirectly interact with viral infections, including immunosenescence, inflammation and inflammasomes, adaptive immunosenescence, genomic instability, mitochondrial dysfunction, telomere attrition, epigenetic alterations, and impaired autophagy. These hallmarks likely contribute to the increased pathophysiological responses to SARS-CoV-2 among older adults and may play roles as an additive risk of accelerated biological aging even after recovery. We also briefly discuss the role of anti-aging drug candidates that require paramount attention in COVID-19 research.

2020 ◽  
Vol 75 (9) ◽  
pp. e34-e41 ◽  
Author(s):  
Shabnam Salimi ◽  
John M Hamlyn

Abstract Within the past several decades, the emergence of new viral diseases with severe health complications and mortality is evidence of an age-dependent, compromised bodily response to abrupt stress with concomitantly reduced immunity. The new severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, causes coronavirus disease 2019 (COVID-19). It has increased morbidity and mortality in persons with underlying chronic diseases and those with a compromised immune system regardless of age and in older adults who are more likely to have these conditions. While SARS-CoV-2 is highly virulent, there is variability in the severity of the disease and its complications in humans. Severe pneumonia, acute respiratory distress syndrome, lung fibrosis, cardiovascular events, acute kidney injury, stroke, hospitalization, and mortality have been reported that result from pathogen–host interactions. Hallmarks of aging, interacting with one another, have been proposed to influence health span in older adults, possibly via mechanisms regulating the immune system. Here, we review the potential roles of the hallmarks of aging, coupled with host–coronavirus interactions. Of these hallmarks, we focused on those that directly or indirectly interact with viral infections, including immunosenescence, inflammation and inflammasomes, adaptive immunosenescence, genomic instability, mitochondrial dysfunction, epigenetic alterations, telomere attrition, and impaired autophagy. These hallmarks likely contribute to the increased pathophysiological responses to SARS-CoV-2 among older adults and may play roles as an additive risk of accelerated biological aging even after recovery. We also briefly discuss the role of antiaging drug candidates that require paramount attention in COVID-19 research.


Author(s):  
Shabnam Salimi ◽  
John M. Hamlyn

Within the past several decades, the emergence of new viral diseases with more severe health complications and mortality, primarily in older adults with comorbidities, is evidence of an age-dependent, compromised bodily response to abrupt stress with concomitant reduced immunity. The emergence of new infectious coronaviruses such as SARS-CoV-2 has resulted in the coronavirus disease 2019 (COVID-19). The result is increased morbidity and mortality in persons with underlying chronic diseases and among those with compromised defense mechanisms, regardless of age and among older adults who are more likely to fit these categories. COVID-19 appears to be primarily an upper respiratory disease. While SARS-CoV-2 is highly virulent, there is variability in the severity of the disease and its complications in humans. Severe pneumonia, acute respiratory distress syndrome (ARDS), lung fibrosis, cardiac t complication, acute kidney injury, hospitalization, and high mortality have been reported in older adults with COVID-19, that result from pathogen-host interactions. Here, we review potential interactions of the coronavirus and host cellular responses in relation to hallmarks of aging including genomic instability, telomere attrition, impaired autophagy, mitochondrial dysfunction, innate immunosenescence, inflammation and inflammasomes, adaptive immunosenescence, and epigenetic alterations, that likely contribute to the increased pathophysiological responses to SARS-CoV-2 among older adults.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Anna C. Aschenbrenner ◽  
◽  
Maria Mouktaroudi ◽  
Benjamin Krämer ◽  
Marie Oestreich ◽  
...  

Abstract Background The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the severe cases call for a better characterization and understanding of the changes in the immune system. Methods In order to dissect COVID-19-driven immune host responses, we performed RNA-seq of whole blood cell transcriptomes and granulocyte preparations from mild and severe COVID-19 patients and analyzed the data using a combination of conventional and data-driven co-expression analysis. Additionally, publicly available data was used to show the distinction from COVID-19 to other diseases. Reverse drug target prediction was used to identify known or novel drug candidates based on finding from data-driven findings. Results Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third cohort of 16 COVID-19 patients (44 samples). Comparison of COVID-19 blood transcriptomes with those of a collection of over 3100 samples derived from 12 different viral infections, inflammatory diseases, and independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic immune response of the host. Conclusions Our study provides novel insights in the distinct molecular subgroups or phenotypes that are not simply explained by clinical parameters. We show that whole blood transcriptomes are extremely informative for COVID-19 since they capture granulocytes which are major drivers of disease severity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Miguel Ángel Palacios-Pedrero ◽  
Albert D. M. E. Osterhaus ◽  
Tanja Becker ◽  
Husni Elbahesh ◽  
Guus F. Rimmelzwaan ◽  
...  

Immunosenescence is a process associated with aging that leads to dysregulation of cells of innate and adaptive immunity, which may become dysfunctional. Consequently, older adults show increased severity of viral and bacterial infections and impaired responses to vaccinations. A better understanding of the process of immunosenescence will aid the development of novel strategies to boost the immune system in older adults. In this review, we focus on major alterations of the immune system triggered by aging, and address the effect of chronic viral infections, effectiveness of vaccination of older adults and strategies to improve immune function in this vulnerable age group.


2021 ◽  
Author(s):  
Homa Rezaei ◽  
Sajad Khiali ◽  
Haleh Rezaee ◽  
Hossein Bannazadeh Baghi ◽  
Matin Pourghasem ◽  
...  

The coronavirus disease 2019 (COVID-19) outbreak has caused a public health crisis worldwide. However, data regarding the protective factors of the disease is limited. Consequently, preventive health measures that can decrease the risk of infection, progression, and severity are dreadfully required. It is well-documented that people with immunodeficiency, such as the elderly, people who already have comorbidities (e.g., diabetes mellitus, hypertension, respiratory and cardiovascular disorders), and underrepresented minorities, are placed in a group with a higher risk of getting infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A diet rich in vitamins, minerals, and antioxidants plays an essential role in strengthening the immune system and fighting against invading pathogens. The present comprehensive review has discussed published literature regarding the potential role of vitamins in strengthening the immune system and managing viral infections, particularly SARS-CoV-2 infection. Although there are controversial data regarding the plasma level of vitamin D and the severity of the disease, according to the limited evidence, vitamin D may lower the mortality rate. Moreover, vitamin C could reduce the development of inflammatory response; however, the results of ongoing clinical trials are required to confirm these primary findings.


Author(s):  
Anna C. Aschenbrenner ◽  
Maria Mouktaroudi ◽  
Benjamin Krämer ◽  
Nikolaos Antonakos ◽  
Marie Oestreich ◽  
...  

SUMMARYThe SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the severe cases calls for a better characterization and understanding of the changes in the immune system. Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third cohort of 11 COVID-19 patients. Comparison of COVID-19 blood transcriptomes with those of a collection of over 2,600 samples derived from 11 different viral infections, inflammatory diseases and independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic immune response of the host.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 716-722
Author(s):  
Sneha Dhakite ◽  
Sadhana Misar Wajpeyi

The “Coronavirus disease 19 (COVID-19)” is caused by “Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)”, a newly discovered member of the Coronaviridae family of viruses which is a highly communicable. There is no effective medical treatment till date for Coronavirus disease hence prevention is the best way to keep disease away. Rasayana proved to be highly efficacious and cost effective for the Prevention and Control of viral infections when vaccines and standard therapies are lacking. Rasayana Chikitsa is one of the eight branches of Ashtanga Ayurveda which helps to maintain healthy life style. Rasayana improves immunity and performs many vital functions of human body. Vyadhikshamatva that is immune mechanism of the body is involved in Prevention of the occurrence of a new disease and it also decreases the virulence and progression of an existing disease. In COVID-19 the Respiratory system mainly get affected which is evident from its symptoms like cold, cough and breathlessness. Here the drugs help in enhancing immune system and strengthening functions of Respiratory system can be useful. For this purpose, the Rasayana like Chyavanprasha, Agastya Haritaki, Pippali Rasayana, Guduchi, Yashtimadhu, Haridra, Ashwagandha, Tulsi are used. Rasayana working on Respiratory system are best for Prevention of Coronavirus and boosting immune system. Rasayana Chikitsa can be effective in the Prevention as well as reducing symptoms of COVID-19.


2021 ◽  
Vol 9 (7) ◽  
pp. 1519
Author(s):  
Sonia R. Isaacs ◽  
Dylan B. Foskett ◽  
Anna J. Maxwell ◽  
Emily J. Ward ◽  
Clare L. Faulkner ◽  
...  

For over a century, viruses have left a long trail of evidence implicating them as frequent suspects in the development of type 1 diabetes. Through vigorous interrogation of viral infections in individuals with islet autoimmunity and type 1 diabetes using serological and molecular virus detection methods, as well as mechanistic studies of virus-infected human pancreatic β-cells, the prime suspects have been narrowed down to predominantly human enteroviruses. Here, we provide a comprehensive overview of evidence supporting the hypothesised role of enteroviruses in the development of islet autoimmunity and type 1 diabetes. We also discuss concerns over the historical focus and investigation bias toward enteroviruses and summarise current unbiased efforts aimed at characterising the complete population of viruses (the “virome”) contributing early in life to the development of islet autoimmunity and type 1 diabetes. Finally, we review the range of vaccine and antiviral drug candidates currently being evaluated in clinical trials for the prevention and potential treatment of type 1 diabetes.


2021 ◽  
Vol 15 ◽  
pp. 175346662199505
Author(s):  
Alastair Watson ◽  
Tom M. A. Wilkinson

With the global over 60-year-old population predicted to more than double over the next 35 years, caring for this aging population has become a major global healthcare challenge. In 2016 there were over 1 million deaths in >70 year olds due to lower respiratory tract infections; 13–31% of these have been reported to be caused by viruses. Since then, there has been a global COVID-19 pandemic, which has caused over 2.3 million deaths so far; increased age has been shown to be the biggest risk factor for morbidity and mortality. Thus, the burden of respiratory viral infections in the elderly is becoming an increasing unmet clinical need. Particular challenges are faced due to the interplay of a variety of factors including complex multimorbidities, decreased physiological reserve and an aging immune system. Moreover, their atypical presentation of symptoms may lead to delayed necessary care, prescription of additional drugs and prolonged hospital stay. This leads to morbidity and mortality and further nosocomial spread. Clinicians currently have limited access to sensitive detection methods. Furthermore, a lack of effective antiviral treatments means there is little incentive to diagnose and record specific non-COVID-19 viral infections. To meet this unmet clinical need, it is first essential to fully understand the burden of respiratory viruses in the elderly. Doing this through prospective screening research studies for all respiratory viruses will help guide preventative policies and clinical trials for emerging therapeutics. The implementation of multiplex point-of-care diagnostics as a mainstay in all healthcare settings will be essential to understand the burden of respiratory viruses, diagnose patients and monitor outbreaks. The further development of novel targeted vaccinations as well as anti-viral therapeutics and new ways to augment the aging immune system is now also essential. The reviews of this paper are available via the supplemental material section.


Sign in / Sign up

Export Citation Format

Share Document