scholarly journals Stochastic Modeling Of Photovoltaic Cell Condition

Author(s):  
Grzegorz Trzmiel

The paper presents the author’ original modification of the residual method in order to construct an efficient tool for assessing the condition of photovoltaic cells, in particular – panels made of amorphous cells which are characterized by significant random operation parameter changes. The solution constructed has been verified through experiments, which show the usefulness of the proposed methodology as it allows to minimize the risk of obtaining false diagnostic information in the process of assessing the condition of photovoltaic panels.

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8358
Author(s):  
Grzegorz Trzmiel ◽  
Jaroslaw Jajczyk ◽  
Ewa Kardas-Cinal ◽  
Norbert Chamier-Gliszczynski ◽  
Waldemar Wozniak ◽  
...  

The paper presents an original method underlying an efficient tool for assessing the condition of photovoltaic (PV) modules, in particular, those made of amorphous cells. Significantly random changes in operational parameters characterize amorphous cell operation and cause them to be challenging to test, especially in working conditions. To develop the method, the authors modified the residual method with incorporated histograms. The proposed method has been verified through experiments that show the usefulness of the proposed approach. It significantly minimizes the risk of false diagnostic information in assessing the condition of photovoltaic modules. Based on the proposed methods, the inference results confirm the effectiveness of the concept for evaluating the degree of failure of the photovoltaic module described in the paper.


2011 ◽  
Vol 121-126 ◽  
pp. 4229-4233
Author(s):  
Ping Chuan Zhang ◽  
Yun Long Kong ◽  
Hang Sen Zhang

This paper design an intelligent photovoltaic cell test system. The high performance dual-core 16bits SPCE061A microprocessors are used as control and data processing center. The powerful data operation ability of SPCE061A makes it to carry out software filter for measured data and enhances testing precision. the experiments demonstrated the test system can measure the characteristic parameters of photovoltaic cells: open voltage, current, the fill factor and photoelectric conversion efficiency, draw photovoltaic cells I-V curve, find the best working points , and also have the characteristics of miniaturization and intelligent.


Coatings ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 329 ◽  
Author(s):  
Dong Shin ◽  
Suk-Ho Choi

It is necessary to develop semitransparent photovoltaic cell for increasing the energy density from sunlight, useful for harvesting solar energy through the windows and roofs of buildings and vehicles. Current semitransparent photovoltaics are mostly based on Si, but it is difficult to adjust the color transmitted through Si cells intrinsically for enhancing the visual comfort for human. Recent intensive studies on translucent polymer- and perovskite-based photovoltaic cells offer considerable opportunities to escape from Si-oriented photovoltaics because their electrical and optical properties can be easily controlled by adjusting the material composition. Here, we review recent progress in materials fabrication, design of cell structure, and device engineering/characterization for high-performance/semitransparent organic and perovskite solar cells, and discuss major problems to overcome for commercialization of these solar cells.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6708
Author(s):  
Paweł Węgierek ◽  
Justyna Pastuszak ◽  
Kamil Dziadosz ◽  
Marcin Turek

The main goal of this work was to conduct a comparative analysis of the electrical properties of the silicon implanted with neon ions, depending on the dose of ions and the type of substrate doping, for the possibility of generating additional energy levels by ion implantation in terms of improving the efficiency of photovoltaic cells made on its basis. The article presents the results of research on the capacitance and conductance of silicon samples doped with boron and phosphorus, the structure of which was modified in the implantation process with Ne+ ions with energy E = 100 keV and different doses. The analysis of changes in electrical properties recorded at the annealing temperature of the samples Ta = 298 K, 473 K, 598 K, 673 K, and 873 K, concerned the influence of the test temperature in the range from 203 K to 373 K, as well as the frequency f from 100 Hz to 10 MHz, and voltage U from 0.25 V to 2 V. It was possible to detect intermediate bands in the tested samples and determine their position in the band gap by estimating the activation energy value. By means of implantation, it is possible to modify the width of the silicon energy gap, the value of which directly affects the efficiency of the photovoltaic cell made on its basis. By introducing appropriate defects into the silicon crystal lattice, contributing to a change in the value of the energy gap Eg, it is possible to increase the efficiency of the solar cell. On the basis of the obtained results, it can be seen that the highest activation energies are achieved for samples doped with phosphorus.


Nanoscale ◽  
2017 ◽  
Vol 9 (28) ◽  
pp. 10075-10083 ◽  
Author(s):  
Muhammad Naufal Lintangpradipto ◽  
Nikolai Tsevtkov ◽  
Byeong Cheul Moon ◽  
Jeung Ku Kang

We found that a perovskite photovoltaic cell can be tailored to boost light harvesting capabilityviaenhanced light collection of small QDs through Förster resonance energy transfer (FRET) and enhanced light reflection of large QDs at the interfaces with the perovskite.


2013 ◽  
Author(s):  
Ivan I. Muñoz ◽  
Amador M. Guzmán ◽  
Andres J. Diaz

The enhancement of the optical efficiency in both, organic and non-organics photovoltaic cells, with inclusion of metallic nanoparticles that induces surface plasmon resonant effects, is determined and studied by computational simulations. The Maxwell equations are solved in the frequency domain using a Finite Element Methods (FEM) based computational program. The absorption of the active layer is directly obtained and weighted by the corresponding solar spectrum. Then, the photovoltaic cell optical efficiency is ultimately determined. This investigation demonstrated that for photovoltaic cells without nanoparticles, there exist three optimal configurations: an organic glass/PEDOT:PSS/CuPc:PTCBI/Ag cell; and non-organic glass/ ITO/CuInSe2/Ag and glass//ITO/CdTe/Ag cells. The numerical simulations show that optimal efficiency depends on the cell material and positioning of the nanoparticle within the cell. For an organic cell, the optimal efficiency was obtained with silver nanoparticles positioned at the bottom of the active layer (position 3); whereas, for non-organic cells, the optical efficiency was obtained with aluminum nanoparticles positioned between the glass and TCO layers (position 1). From the three dimensional simulations, it was determined that silver nanoparticles with a diameter of 80nm within a cubic cell of period 230nm positioned in position 3 of the active layer of CuPc:PTCBI of an organic photovoltaic cell allow the augmentation of the efficiency such that a similar efficiency can be obtained with a cell of the same material but without nanoparticles and an active layer thickness 94% higher than with nanoparticles. For aluminum nanoparticles with a diameter of 30 nm in a cubic cell of period 40nm positioned in position 1 of the active layer de CuInSe2 of a non-organic photovoltaic cell, the efficiency is augmented to such a value that this value can be obtained with a non-organic photovoltaic cell with no nanoparticles and a an active layer thickness 137% higher than with nanoparticles.


2020 ◽  
Author(s):  
Naoufel Ben Hamadi

Abstract Background: A photovoltaic cell, or solar cell, is an electronic component which, exposed to light, produces electricity thanks to the photovoltaic effect. Organic photovoltaic cells are photovoltaic cells of which at least the active layer consists of organic molecules. It has a yield of at least 15%. The future prospects of the research for solar cells application has required for the development in the field.Main body: Dye-sensitized solar cells are considered to be promising candidates for low-cost solar energy harvesting using sustainable and environmentally friendly materials. In general, solar cells sensitized to dyes consist of three parts: TiO2 sensitized to the photoanode dye with porous film on a transparent conductive glass, an electrolyte solution penetrating through the TiO2 anode film, and the conductive oxide transparent platinum glass as counter electrode.Conclusion: In this work, betanin dye was extracted from mature red fruits of Opuntia ficus indica and purified with fractional crystallization protocol using an 8:2 (v/v) ratio of ethyl acetate/ethanol. TiO2_films with different thickness values have been prepared CV and US sensitization of TiO2_films using betanin dye prove an enhancement on the uniformity distribution of the dye on the film in case of US method. Emission spectra of Dye_TiO2 films have been measured and show a hyperchromic shift of the emission intensity with the increase of the thickness due to the augmentation of betanin content. A comparison between the photovoltaic properties of prepared betanin_DSSC and N719 dye_DSSC reveals that betanin dye could be successfully proposed as a sensitizing dye in solar cell applications.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8155
Author(s):  
Eduardo Venegas-Reyes ◽  
Naghelli Ortega-Avila ◽  
Manuel I. Peña-Cruz ◽  
Omar J. García-Ortiz ◽  
Norma A. Rodríguez-Muñoz

The photovoltaic cell surface in linear hybrid concentrated solar collectors receives non-uniform radiative flux, causing additional thermal stress due to hot spots and reducing its electrical performance and durability. The current study proposes a parametric methodology to determine the optimal receiver displacement required in a linear Cassegrain-type hybrid solar collector. The aim was to achieve a minimal non-uniformity distribution and a high radiative flux over the photovoltaic cells, considering optical errors close to real environment conditions and analyzing the heat transfer to determine the electrical and thermal efficiencies. The developed methodology was applied to analyze a case study with a receiver width of 0.125 m and rim angle of 80° and using a commercial silicon photovoltaic cell that supports up to 7000 W/m2. After applying the methodology, a hybrid solar collector with a concentration ratio of 13.0 and receiver displacement of 0.14 m is recommended. As a result, 5728 W/m2 of average radiative flux with non-uniformity lower than 4% was achieved. Thus, thanks to the proposed configuration, a low non-uniformity and high radiative flux were achieved, benefiting the photovoltaic cells’ life while improving their operation.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2659 ◽  
Author(s):  
Daniela Fontani ◽  
Paola Sansoni ◽  
Franco Francini ◽  
Matteo Messeri ◽  
Giacomo Pierucci ◽  
...  

The electroluminescence test is an experiment typically used to verify the behavior of the photovoltaic cell and to qualitatively check its integrity. It works by operating the photovoltaic cell as a diode polarized directly: the cells that light up in a module indicate how many of them work. This test provides an estimate of the maximum performance of the entire photovoltaic module. A qualitative inspection was performed by electroluminescence tests on 48 modules of photovoltaic cells. They had already been installed on a small-size concentration solar plant before the test and some modules had reached a lower level of performance than expected. A first electroluminescence test was performed, which showed that only 61.5% of the photocells worked. Since there were visible signs of humidity within the various modules, some of the inoperative modules underwent a dehumidification treatment in a climatic chamber. A second electroluminescence test showed that the percentage of functioning cells had increased to 66.3% after the drying treatment.


2014 ◽  
Vol 1001 ◽  
pp. 342-349
Author(s):  
Miroslav Šimčák ◽  
Edita Majerová

Solar energy is the most important source of renewable energy. At present, the consumption of energy resources is very high and the existing stocks are extremely limited. This paper considers the acquisition of energy through the photoelectric effect, whereas the rapidly increasing demand for photovoltaic panels and solar power. The question is how to design the proper size and location of the photovoltaic cell, not only in terms of the effectiveness of economic recovery, to achieve the greatest energy utilization but particularly in terms of fire protection. Data on fires photovoltaic power plant were processed by statistical methods, because we do not know the relevant estimates the frequency of fires.


Sign in / Sign up

Export Citation Format

Share Document