scholarly journals Admixture Analysis Using Genotyping-by-Sequencing Reveals Genetic Relatedness and Parental Lineage Distribution in Highbush Blueberry Genotypes and Cross Derivatives

Author(s):  
Krishnanand P. Kulkarni ◽  
Nicholi Vorsa ◽  
Purushothaman Natarajan ◽  
Sathya Elavarthi ◽  
Massimo Iorizzo ◽  
...  

Blueberries (Vaccinium section Cyanococcus) are perennial shrubs widely cultivated for their edible fruits. In this study, we used admixture and genetic relatedness analysis of northern highbush (NHB, V. corymbosum) and southern highbush (SHB, V. darrowii) blueberry genotypes and F2 progenies of the V. corymbosum × V. darrowii cross. Using genotyping-by-sequencing (GBS), we generated ~3.34 billion reads (75 bp). The GBS reads were aligned to the Vaccinium corymbosum cv. Draper v1.0 reference genome sequence, and ~2.8 million reads were successfully mapped. From the alignments, we identified 2,244,039 single nucleotide polymorphisms (SNPs), which were used for principal component, haplotype, and admixture analysis. PCA formed three main groups: 1) NHB cultivars, 2) SHB cultivars, and 3) BNJ16-5 progenies. The overall fixation index (FST) and nucleotide diversity for NHB and SHB, indicated wide genetic differentiation, and haplotype analysis revealed that SHB cultivars are more genetically diverse than NHB cultivars. The admixture analysis identified a mix of various lineages of parental genomic introgression. This study demonstrated the effectiveness of GBS-derived SNP markers in genetic and admixture analyses to reveal genetic relatedness and to examine parental lineages in blueberry, which may be useful for future breeding plans.

2020 ◽  
Vol 22 (1) ◽  
pp. 163
Author(s):  
Krishnanand P. Kulkarni ◽  
Nicholi Vorsa ◽  
Purushothaman Natarajan ◽  
Sathya Elavarthi ◽  
Massimo Iorizzo ◽  
...  

Blueberries (Vaccinium section Cyanococcus) are perennial shrubs widely cultivated for their edible fruits. In this study, we performed admixture and genetic relatedness analysis of northern highbush (NHB, primarily V. corymbosum) and southern highbush (SHB, V. corymbosum introgressed with V. darrowii, V. virgatum, or V. tenellum) blueberry genotypes, and progenies of the BNJ16-5 cross (V. corymbosum × V. darrowii). Using genotyping-by-sequencing (GBS), we generated more than 334 million reads (75 bp). The GBS reads were aligned to the V. corymbosum cv. Draper v1.0 reference genome sequence, and ~2.8 million reads were successfully mapped. From the alignments, we identified 2,244,039 single-nucleotide polymorphisms, which were used for principal component, haplotype, and admixture analysis. Principal component analysis revealed three main groups: (1) NHB cultivars, (2) SHB cultivars, and (3) BNJ16-5 progenies. The overall fixation index (FST) and nucleotide diversity for NHB and SHB cultivars indicated wide genetic differentiation, and haplotype analysis revealed that SHB cultivars are more genetically diverse than NHB cultivars. The admixture analysis identified a mixture of various lineages of parental genomic introgression. This study demonstrated the effectiveness of GBS-derived single-nucleotide polymorphism markers in genetic and admixture analyses to reveal genetic relatedness and to examine parental lineages in blueberry, which may be useful for future breeding plans.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Heshan Du ◽  
Jingjing Yang ◽  
Bin Chen ◽  
Xiaofen Zhang ◽  
Jian Zhang ◽  
...  

Abstract Background The widely cultivated pepper (Capsicum spp.) is one of the most diverse vegetables; however, little research has focused on characterizing the genetic diversity and relatedness of commercial varieties grown in China. In this study, a panel of 92 perfect single-nucleotide polymorphisms (SNPs) was identified using re-sequencing data from 35 different C. annuum lines. Based on this panel, a Target SNP-seq genotyping method was designed, which combined multiplex amplification of perfect SNPs with Illumina sequencing, to detect polymorphisms across 271 commercial pepper varieties. Results The perfect SNPs panel had a high discriminating capacity due to the average value of polymorphism information content, observed heterozygosity, expected heterozygosity, and minor allele frequency, which were 0.31, 0.28, 0.4, and 0.31, respectively. Notably, the studied pepper varieties were morphologically categorized based on fruit shape as blocky-, long horn-, short horn-, and linear-fruited. The long horn-fruited population exhibited the most genetic diversity followed by the short horn-, linear-, and blocky-fruited populations. A set of 35 core SNPs were then used as kompetitive allele-specific PCR (KASPar) markers, another robust genotyping technique for variety identification. Analysis of genetic relatedness using principal component analysis and phylogenetic tree construction indicated that the four fruit shape populations clustered separately with limited overlaps. Based on STRUCTURE clustering, it was possible to divide the varieties into five subpopulations, which correlated with fruit shape. Further, the subpopulations were statistically different according to a randomization test and Fst statistics. Nine loci, located on chromosomes 1, 2, 3, 4, 6, and 12, were identified to be significantly associated with the fruit shape index (p < 0.0001). Conclusions Target SNP-seq developed in this study appears as an efficient power tool to detect the genetic diversity, population relatedness and molecular breeding in pepper. Moreover, this study demonstrates that the genetic structure of Chinese pepper varieties is significantly influenced by breeding programs focused on fruit shape.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1042
Author(s):  
Zhuoying Weng ◽  
Yang Yang ◽  
Xi Wang ◽  
Lina Wu ◽  
Sijie Hua ◽  
...  

Pedigree information is necessary for the maintenance of diversity for wild and captive populations. Accurate pedigree is determined by molecular marker-based parentage analysis, which may be influenced by the polymorphism and number of markers, integrity of samples, relatedness of parents, or different analysis programs. Here, we described the first development of 208 single nucleotide polymorphisms (SNPs) and 11 microsatellites for giant grouper (Epinephelus lanceolatus) taking advantage of Genotyping-by-sequencing (GBS), and compared the power of SNPs and microsatellites for parentage and relatedness analysis, based on a mixed family composed of 4 candidate females, 4 candidate males and 289 offspring. CERVUS, PAPA and COLONY were used for mutually verification. We found that SNPs had a better potential for relatedness estimation, exclusion of non-parentage and individual identification than microsatellites, and > 98% accuracy of parentage assignment could be achieved by 100 polymorphic SNPs (MAF cut-off < 0.4) or 10 polymorphic microsatellites (mean Ho = 0.821, mean PIC = 0.651). This study provides a reference for the development of molecular markers for parentage analysis taking advantage of next-generation sequencing, and contributes to the molecular breeding, fishery management and population conservation.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1190 ◽  
Author(s):  
Eunju Seo ◽  
Kipoong Kim ◽  
Tae-Hwan Jun ◽  
Jinsil Choi ◽  
Seong-Hoon Kim ◽  
...  

Cowpea is one of the most essential legume crops providing inexpensive dietary protein and nutrients. The aim of this study was to understand the genetic diversity and population structure of global and Korean cowpea germplasms. A total of 384 cowpea accessions from 21 countries were genotyped with the Cowpea iSelect Consortium Array containing 51,128 single-nucleotide polymorphisms (SNPs). After SNP filtering, a genetic diversity study was carried out using 35,116 SNPs within 376 cowpea accessions, including 229 Korean accessions. Based on structure and principal component analysis, a total of 376 global accessions were divided into four major populations. Accessions in group 1 were from Asia and Europe, those in groups 2 and 4 were from Korea, and those in group 3 were from West Africa. In addition, 229 Korean accessions were divided into three major populations (Q1, Jeonra province; Q2, Gangwon province; Q3, a mixture of provinces). Additionally, the neighbor-joining tree indicated similar results. Further genetic diversity analysis within the global and Korean population groups indicated low heterozygosity, a low polymorphism information content, and a high inbreeding coefficient in the Korean cowpea accessions. The population structure analysis will provide useful knowledge to support the genetic potential of the cowpea breeding program, especially in Korea.


HortScience ◽  
2016 ◽  
Vol 51 (5) ◽  
pp. 481-486 ◽  
Author(s):  
Jessica Chitwood ◽  
Ainong Shi ◽  
Beiquan Mou ◽  
Michael Evans ◽  
John Clark ◽  
...  

Spinach (Spinacia oleracea L.) is an important vegetable worldwide with high nutritional and health-promoting compounds. Bolting is an important trait to consider to grow spinach in different seasons and regions. Plant height and leaf erectness are important traits for machine harvesting. Breeding slow bolting, taller, and more erect spinach cultivars is needed for improved spinach production. A total of 288 United States Department of Agriculture (USDA) spinach accessions were used as the association panel in this research. Single-nucleotide polymorphisms (SNPs) discovered through genotyping by sequencing (GBS) were used for genotyping. Two structured populations and the admixtures were inferred for the 288 spinach accession panel using STRUCTURE and MEGA. Association mapping was conducted using single-marker regression (SMR) in QGene, and general linear model (GLM) and mixed linear model (MLM) built in TASSEL. Three SNP markers, AYZV02001321_398, AYZV02041012_1060, and AYZV02118171_95 were identified to be associated with bolting. Eight SNP markers, AYZV02014270_540, AYZV02250508_2162, AYZV02091523_19842, AYZV02141794_376, AYZV02077023_64, AYZV02210662_2532, AYZV02153224_2197, and AYZV02003975_248 were found to be associated with plant height. Four SNP markers, AYZV02188832_229, AYZV02219088_79, AYZV02030116_256, and AYZV02129827_197 were associated with erectness. These SNP markers may provide breeders with a tool in spinach molecular breeding to select spinach bolting, plant height, and erectness through marker-assisted selection (MAS).


2017 ◽  
Vol 2 ◽  
pp. 10 ◽  
Author(s):  
Irene Omedo ◽  
Polycarp Mogeni ◽  
Teun Bousema ◽  
Kirk Rockett ◽  
Alfred Amambua-Ngwa ◽  
...  

Background: The first models of malaria transmission assumed a completely mixed and homogeneous population of parasites.  Recent models include spatial heterogeneity and variably mixed populations. However, there are few empiric estimates of parasite mixing with which to parametize such models. Methods: Here we genotype 276 single nucleotide polymorphisms (SNPs) in 5199 P. falciparum isolates from two Kenyan sites (Kilifi county and Rachuonyo South district) and one Gambian site (Kombo coastal districts) to determine the spatio-temporal extent of parasite mixing, and use Principal Component Analysis (PCA) and linear regression to examine the relationship between genetic relatedness and distance in space and time for parasite pairs. Results: Using 107, 177 and 82 SNPs that were successfully genotyped in 133, 1602, and 1034 parasite isolates from The Gambia, Kilifi and Rachuonyo South district, respectively, we show that there are no discrete geographically restricted parasite sub-populations, but instead we see a diffuse spatio-temporal structure to parasite genotypes.  Genetic relatedness of sample pairs is predicted by relatedness in space and time. Conclusions: Our findings suggest that targeted malaria control will benefit the surrounding community, but unfortunately also that emerging drug resistance will spread rapidly through the population.


2019 ◽  
Author(s):  
Tika B. Adhikari ◽  
Brian J. Knaus ◽  
Niklaus J. Grünwald ◽  
Dennis Halterman ◽  
Frank J. Louws

ABSTRACTGenotyping by sequencing (GBS) is considered a powerful tool to discover single nucleotide polymorphisms (SNPs), which are useful to characterize closely related genomes of plant species and plant pathogens. We applied GBS to determine genome-wide variations in a panel of 187 isolates of three closely related Alternaria spp. that cause diseases on tomato and potato in North Carolina (NC) and Wisconsin (WI). To compare genetic variations, reads were mapped to both A. alternata and A. solani draft reference genomes and detected dramatic differences in SNPs among them. Comparison of A. linariae and A. solani populations by principal component analysis revealed the first (83.8% of variation) and second (8.0% of variation) components contained A. linariae from tomato in NC and A. solani from potato in WI, respectively, providing evidence of population structure. Genetic differentiation (Hedrick’s G’ST) in A. linariae populations from Haywood, Macon, and Madison counties in NC were little or no differentiated (G’ST 0.0 - 0.2). However, A. linariae population from Swain county appeared to be highly differentiated (G’ST > 0.8). To measure the strength of the linkage disequilibrium (LD), we also calculated the allelic association between pairs of loci. Lewontin’s D (measures the fraction of allelic variations) and physical distances provided evidence of linkage throughout the entire genome, consistent with the hypothesis of non-random association of alleles among loci. Our findings provide new insights into the understanding of clonal populations on a genome-wide scale and microevolutionary factors that might play an important role in population structure. Although we found limited genetic diversity, the three Alternaria spp. studied here are genetically distinct and each species is preferentially associated with one host.


2021 ◽  
Vol 12 ◽  
Author(s):  
Felipe Bitencourt Martins ◽  
Aline Costa Lima Moraes ◽  
Alexandre Hild Aono ◽  
Rebecca Caroline Ulbricht Ferreira ◽  
Lucimara Chiari ◽  
...  

Artificial hybridization plays a fundamental role in plant breeding programs since it generates new genotypic combinations that can result in desirable phenotypes. Depending on the species and mode of reproduction, controlled crosses may be challenging, and contaminating individuals can be introduced accidentally. In this context, the identification of such contaminants is important to avoid compromising further selection cycles, as well as genetic and genomic studies. The main objective of this work was to propose an automated multivariate methodology for the detection and classification of putative contaminants, including apomictic clones (ACs), self-fertilized individuals, half-siblings (HSs), and full contaminants (FCs), in biparental polyploid progenies of tropical forage grasses. We established a pipeline to identify contaminants in genotyping-by-sequencing (GBS) data encoded as allele dosages of single nucleotide polymorphism (SNP) markers by integrating principal component analysis (PCA), genotypic analysis (GA) measures based on Mendelian segregation, and clustering analysis (CA). The combination of these methods allowed for the correct identification of all contaminants in all simulated progenies and the detection of putative contaminants in three real progenies of tropical forage grasses, providing an easy and promising methodology for the identification of contaminants in biparental progenies of tetraploid and hexaploid species. The proposed pipeline was made available through the polyCID Shiny app and can be easily coupled with traditional genetic approaches, such as linkage map construction, thereby increasing the efficiency of breeding programs.


2021 ◽  
Vol 22 (7) ◽  
pp. 3436
Author(s):  
Amol N. Nankar ◽  
Richard C. Pratt

Maize has played a key role in the sustenance and cultural traditions of the inhabitants of the southwestern USA for many centuries. Blue maize is an important component of the diverse landraces still cultivated in the region but the degree to which they are related is unknown. This research was designed to ascertain the genotypic, morphological, and phenotypic diversity of six representative southwestern blue maize landraces. Their genotypic diversity was examined using tunable genotyping-by-sequencing (tGBS™). A total of 81,038 high quality SNPs were identified and obtained through tGBS. A total of 45 morphological and biochemical traits were evaluated at two locations in New Mexico. The varieties Los Lunas High and Flor del Rio were genetically less related with other southwestern landraces whereas diffusion between Navajo Blue, Hopi Blue, Yoeme Blue, and Taos Blue demonstrated that these landraces were genetically related. Phenotypic variability was highest for kernel traits and least for plant traits. Plant, ear, and kernel traits were fairly consistent within and across locations. Principal component analysis and tGBS showed that Corn Belt variety ‘Ohio Blue’ was distinctly different from southwestern landraces. Genotypic analysis displayed that southwestern landraces are genetically closely related, but selection has resulted in differing phenotypes. This study has provided additional insight into the genetic relatedness of southwestern blue maize landraces.


2017 ◽  
Vol 2 ◽  
pp. 10 ◽  
Author(s):  
Irene Omedo ◽  
Polycarp Mogeni ◽  
Teun Bousema ◽  
Kirk Rockett ◽  
Alfred Amambua-Ngwa ◽  
...  

Background: The first models of malaria transmission assumed a completely mixed and homogeneous population of parasites.  Recent models include spatial heterogeneity and variably mixed populations. However, there are few empiric estimates of parasite mixing with which to parametize such models. Methods: Here we genotype 276 single nucleotide polymorphisms (SNPs) in 5199 P. falciparum isolates from two Kenyan sites and one Gambian site to determine the spatio-temporal extent of parasite mixing, and use Principal Component Analysis (PCA) and linear regression to examine the relationship between genetic relatedness and relatedness in space and time for parasite pairs. Results: We show that there are no discrete geographically restricted parasite sub-populations, but instead we see a diffuse spatio-temporal structure to parasite genotypes.  Genetic relatedness of sample pairs is predicted by relatedness in space and time. Conclusions: Our findings suggest that targeted malaria control will benefit the surrounding community, but unfortunately also that emerging drug resistance will spread rapidly through the population.


Sign in / Sign up

Export Citation Format

Share Document