scholarly journals The Role of Space Weather and Geophysical Processes in Behavioral Studies

Author(s):  
Andras Halasz ◽  
Zoltan Toth

Living organisms with developed endocrine systems react in a complex way to environmental changes. Changing atmospheric pressure causes different blood pressures or hormone levels; carcinogenic radiation modifies the structure of DNA. Charged particles and ions act as neurotransmitters and block certain types of protein channels and receptors. A high concentration of carbon dioxide has an indirect effect on both blood pressure and neuron activity. The bioelectric nature of living tissues highlights the complexity of the connection between the dynamic physical environment and biological systems. Recent results from studies on the interactions and connections mentioned above are reviewed in this paper.

2018 ◽  
Author(s):  
Nicola Molinari ◽  
Jonathan P. Mailoa ◽  
Boris Kozinsky

<div> <div> <div> <p>The model and analysis methods developed in this work are generally applicable to any polymer electrolyte/cation-anion combination, but we focus on the currently most prominent polymer electrolyte material system: poly(ethylene) oxide/Li- bis(trifluoromethane) sulfonamide (PEO + LiTFSI). The obtained results are surprising and challenge the conventional understanding of ionic transport in polymer electrolytes: the investigation of a technologically relevant salt concentration range (1 - 4 M) revealed the central role of the anion in coordinating and hindering Li ion movement. Our results provide insights into correlated ion dynamics, at the same time enabling rational design of better PEO-based electrolytes. In particular, we report the following novel observations. 1. Strong binding of the Li cation with the polymer competes with significant correlation of the cation with the salt anion. 2. The appearance of cation-anion clusters, especially at high concentration. 3. The asymmetry in the composition (and therefore charge) of such clusters; specifically, we find the tendency for clusters to have a higher number of anions than cations.</p> </div> </div> </div>


2018 ◽  
Author(s):  
Nicola Molinari ◽  
Jonathan P. Mailoa ◽  
Boris Kozinsky

<div> <div> <div> <p>The model and analysis methods developed in this work are generally applicable to any polymer electrolyte/cation-anion combination, but we focus on the currently most prominent polymer electrolyte material system: poly(ethylene) oxide/Li- bis(trifluoromethane) sulfonamide (PEO + LiTFSI). The obtained results are surprising and challenge the conventional understanding of ionic transport in polymer electrolytes: the investigation of a technologically relevant salt concentration range (1 - 4 M) revealed the central role of the anion in coordinating and hindering Li ion movement. Our results provide insights into correlated ion dynamics, at the same time enabling rational design of better PEO-based electrolytes. In particular, we report the following novel observations. 1. Strong binding of the Li cation with the polymer competes with significant correlation of the cation with the salt anion. 2. The appearance of cation-anion clusters, especially at high concentration. 3. The asymmetry in the composition (and therefore charge) of such clusters; specifically, we find the tendency for clusters to have a higher number of anions than cations.</p> </div> </div> </div>


2017 ◽  
Vol 68 (9) ◽  
pp. 2006-2009
Author(s):  
Marioara Nicula ◽  
Nicolae Pacala ◽  
Isidora Radulov ◽  
Mirela Ahmadi ◽  
Dorel Dronca ◽  
...  

In living organisms lead is classified as potential toxic metal, and in high concentration can produce intoxication with the alteration of some vital organs, especially liver and kidney. In aquatic environment lead can be absorbed by fishes and other organisms, with different distribution in various tissues. Our aim of experiment was to verify and demonstrate the protective effect of lyophilized garlic and chlorella against bioaccumulation of lead in fishes living in aquatic environment deliberated polluted with lead. Thus, lyophilized garlic and chlorella administrated as supplements in fodder for fishes (Carassius gibelio) diminished the antagonistic effect of lead against zinc in all tested tissues: liver, kidney, heart, brain, ovary, testis, muscles myotome � epaxial, skin � with scales, gills, and intestine.


Author(s):  
Emily C. Whipple ◽  
Camille A. Favero ◽  
Neal F. Kassell

Abstract Introduction Intra-arterial (lA) delivery of therapeutic agents across the blood-brain barrier (BBB) is an evolving strategy which enables the distribution of high concentration therapeutics through a targeted vascular territory, while potentially limiting systemic toxicity. Studies have demonstrated lA methods to be safe and efficacious for a variety of therapeutics. However, further characterization of the clinical efficacy of lA therapy for the treatment of brain tumors and refinement of its potential applications are necessary. Methods We have reviewed the preclinical and clinical evidence supporting superselective intraarterial cerebral infusion (SSJACI) with BBB disruption for the treatment of brain tumors. In addition, we review ongoing clinical trials expanding the applicability and investigating the efficacy of lA therapy for the treatment of brain tumors. Results Trends in recent studies have embraced the use of SSIACI and less neurotoxic chemotherapies. The majority of trials continue to use mannitol as the preferred method of hyperosmolar BBB disruption. Recent preclinical and preliminary human investigations into the lA delivery of Bevacizumab have demonstrated its safety and efficacy as an anti-tumor agent both alone and in combination with chemotherapy. Conclusion lA drug delivery may significantly affect the way treatment are delivered to patients with brain tumors, and in particular GBM. With refinement and standardization of the techniques of lA drug delivery, improved drug selection and formulations, and the development of methods to minimize treatment-related neurological injury, lA therapy may offer significant benefits for the treatment of brain tumors.


2021 ◽  
Author(s):  
Luigimaria Borruso ◽  
Alice Checcucci ◽  
Valeria Torti ◽  
Federico Correa ◽  
Camillo Sandri ◽  
...  

AbstractHere, we investigated the possible linkages among geophagy, soil characteristics, and gut mycobiome of indri (Indri indri), an endangered lemur species able to survive only in wild conditions. The soil eaten by indri resulted in enriched secondary oxide-hydroxides and clays, together with a high concentration of specific essential micronutrients. This could partially explain the role of the soil in detoxification and as a nutrient supply. Besides, we found that soil subject to geophagy and indris’ faeces shared about 8.9% of the fungal OTUs. Also, several genera (e.g. Fusarium, Aspergillus and Penicillium) commonly associated with soil and plant material were found in both geophagic soil and indri samples. On the contrary, some taxa with pathogenic potentials, such as Cryptococcus, were only found in indri samples. Further, many saprotrophs and plant-associated fungal taxa were detected in the indri faeces. These fungal species may be involved in the digestion processes of leaves and could have a beneficial role in their health. In conclusion, we found an intimate connection between gut mycobiome and soil, highlighting, once again, the potential consequent impacts on the wider habitat.


2020 ◽  
Vol 27 (4) ◽  
pp. 163-177
Author(s):  
Mohammad Sadegh Hesamian ◽  
Nahid Eskandari

Multiple sclerosis (MS) is an unpredictable disease of the central nervous system. The cause of MS is not known completely, and pathology is specified by involved demyelinated areas in the white and gray matter of the brain and spinal cord. Inflammation and peripheral tolerance breakdown due to Treg cell defects and/or effector cell resistance are present at all stages of the disease. Several invading peripheral immune cells are included in the process of the disease such as macrophages, CD8+ T cells, CD4+ T cells, B cells, and plasma cells. Trace elements are known as elements found in soil, plants, and living organisms in small quantities. Some of them (e.g., Al, Cu, Zn, Mn, and Se) are essential for the body’s functions like catalysts in enzyme systems, energy metabolism, etc. Al toxicity and Cu, Zn, and Se toxicity and deficiency can affect the immune system and following neuron inflammation and degeneration. These processes may result in MS pathology. Of course, factors such as lifestyle, environment, and industrialization can affect levels of trace elements in the human body.


1957 ◽  
Vol 188 (2) ◽  
pp. 371-374 ◽  
Author(s):  
Sol Rothman ◽  
Douglas R. Drury

The blood pressure responses to various drugs were investigated in renal hypertensive, cerebral hypertensive and normotensive rabbits. Hexamethonium bromide and Dibenamine reduced the blood pressures of renal and cerebral hypertensives. Effects in the normal were insignificant. The cerebral hypertensive's blood pressure was slightly affected by benzodioxane. Blood pressure was not reduced at all in the other groups. Blood pressure of the renal hypertensive rabbit was greatly reduced by Veriloid and dihydroergocornine. Blood pressures of cerebral and normal animals were affected to a lesser degree. The results suggest that maintenance of hypertension in the cerebral hypertensive rabbit depends on an overactive sympathetic nervous system, possibly due to the release of medullary pressor centers from inhibitory impulses originating in higher centers; whereas, the maintenance of hypertension in the renal hypertensive rabbit may be attributed to an increased reactivity of the peripheral vasculature to a normal sympathetic tone.


2002 ◽  
Vol 10 (2) ◽  
pp. 71-77 ◽  
Author(s):  
Rainer Rauramaa ◽  
Raimo Kuhanen ◽  
Timo A. Lakka ◽  
Sari B. Väisänen ◽  
Pirjo Halonen ◽  
...  

We investigated the role of the angiotensinogen (AGT) gene M235T polymorphism in determining blood pressure (BP) response to moderate intensity exercise in a 6-yr randomized controlled trial in 140 middle-aged men. Sitting, supine, and standing blood pressures were measured annually. Of the randomized men, 86% participated in the trial for 6 yr. Submaximal cardiorespiratory fitness increased by 16% in the exercise group. In the M homozygotes, sitting systolic BP decreased by 1.0 mmHg in the exercise but increased by 14.6 mmHg in the reference group ( P = 0.007 for net effect). Sitting and supine diastolic BP decreased by 6.2 and 3.3 mmHg in the exercise but increased by 2.8 and 3.2 mmHg in the reference group ( P = 0.026 and 0.024 for net effects), respectively. Regular moderate intensity exercise attenuates aging-related increase in systolic BP and decreases diastolic BP among the M homozygotes of the AGT gene M235T polymorphism.


2007 ◽  
Vol 79 (4) ◽  
pp. 481-490 ◽  
Author(s):  
Angelo Fontana ◽  
Giuliana d'Ippolito ◽  
Adele Cutignano ◽  
Antonio Miralto ◽  
Adrianna Ianora ◽  
...  

Oxylipins are important signal transduction molecules widely distributed in animals and plants where they regulate a variety of events associated with physiological and pathological processes. The family embraces several different metabolites that share a common origin from the oxygenase-catalyzed oxidation of polyunsaturated fatty acids. The biological role of these compounds has been especially studied in mammalians and higher plants, although a varied and very high concentration of these products has also been reported from marine macroalgae. This article gives a summary of our results concerning the oxylipin chemistry of marine diatoms, a major class of planktonic microalgae that discourage predation from their natural grazers, zooplanktonic copepods, using chemical warfare. These apparently harmless microscopic cells produce a plethora of oxylipins, including short-chain unsaturated aldehydes, hydroxyl-, keto-, and epoxyhydroxy fatty acid derivatives, that induce reproductive failure in copepods through abortions, congenital malformations, and reduced larval growth. The biochemical process involved in the production of these compounds shows a simple regulation based on decompartmentation and mixing of preexisting enzymes and requires hydrolysis of chloroplast-derived glycolipids to feed the downstream activities of C16 and C20 lipoxygenases.


Author(s):  
Ebony I Weems ◽  
Noé U de la Sancha ◽  
Laurel J Anderson ◽  
Carlos Zambrana-Torrelio ◽  
Ronaldo P Ferraris

Synopsis We argue that the current environmental changes stressing the Earth’s biological systems urgently require study from an integrated perspective to reveal unexpected, cross-scale interactions, particularly between microbes and macroscale phenomena. Such interactions are the basis of a mechanistic understanding of the important connections between deforestation and emerging infectious disease, feedback between ecosystem disturbance and the gut microbiome, and the cross-scale effects of environmental pollutants. These kinds of questions can be answered with existing techniques and data, but a concerted effort is necessary to better coordinate studies and data sets from different disciplines to fully leverage their potential.


Sign in / Sign up

Export Citation Format

Share Document